login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073501
Primes p such that the largest prime factor of p^2+1 is less than p.
7
7, 41, 43, 47, 73, 83, 157, 173, 191, 193, 211, 233, 239, 251, 293, 307, 313, 337, 401, 421, 431, 443, 463, 467, 499, 509, 557, 577, 593, 599, 601, 659, 701, 743, 757, 787, 811, 829, 853, 857, 863, 911, 919, 1087, 1109, 1123, 1223, 1229, 1277, 1297, 1301
OFFSET
1,1
COMMENTS
Primes p such that the largest prime factor of p+1 is less than p gives A065091, odd primes.
LINKS
MAPLE
filter:= proc(n) max(numtheory:-factorset(n^2+1))<n end proc:
select(filter, [seq(ithprime(i), i=1..1000)]); # Robert Israel, Aug 07 2019
MATHEMATICA
<<NumberTheory`NumberTheoryFunctions` Select[Prime[Range[250]], Max[PrimeFactorList[1 + #^2]] < # &] (* Ray Chandler, Jan 08 2005 *)
Select[Prime[Range[212]], Max[First /@ FactorInteger[#^2 + 1]] < # &] (* Jayanta Basu, Jul 01 2013 *)
PROG
(Magma) [p:p in PrimesUpTo(1500)|Max(PrimeDivisors(p^2+1)) lt p]; // Marius A. Burtea, Aug 07 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Aug 27 2002
STATUS
approved