OFFSET
0,3
COMMENTS
Numerators of one half of norm square of monic Legendre polynomials p_n(x).
The denominators of these polynomials are given by A069955.
The rationals N2(n) = 2*a(n)/A069955(n) give the minimal norm square for real monic polynomials. The norm square is defined as integral over the interval [-1,+1] of the square of the polynomials. Cf. the Courant-Hilbert reference.
REFERENCES
Richard Courant and David Hilbert, Methoden der mathematischen Physik, Bd. I, 3, Auflage, Springer, 1993, pp. 73-74.
LINKS
Wolfdieter Lang, Norm square, rationals and more.
FORMULA
EXAMPLE
Rationals a(n)/A069955(n): [1, 1/3, 4/45, 4/175, 64/11025, 64/43659, 256/693693, ...].
Rationals N2(n): [2, 2/3, 8/45, 8/175, 128/11025, 128/43659, 512/693693,...].
MATHEMATICA
a[n_] := 4^(n - DigitCount[n, 2, 1]); Array[a, 25, 0] (* Amiram Eldar, Jul 25 2023 *)
PROG
(PARI) a(n) = numerator((1/(2*n+1))*((2^n)/binomial(2*n, n))^2); \\ Michel Marcus, Aug 11 2019
(Julia)
bitcount(n) = sum(digits(n, base=2))
a(n) = 4^(n - bitcount(n)) # Peter Luschny, Oct 01 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 10 2006
EXTENSIONS
New name by Peter Luschny, Oct 01 2019
STATUS
approved