The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124399 a(n) = 4^(n - bitcount(n)) where bitcount(n) = A000120(n). 1
 1, 1, 4, 4, 64, 64, 256, 256, 16384, 16384, 65536, 65536, 1048576, 1048576, 4194304, 4194304, 1073741824, 1073741824, 4294967296, 4294967296, 68719476736, 68719476736, 274877906944, 274877906944, 17592186044416, 17592186044416 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Numerators of one half of norm square of monic Legendre polynomials p_n(x). The denominators of these polynomials are given by A069955. The rationals N2(n) = 2*a(n)/A069955(n) give the minimal norm square for real monic polynomials. The norm square is defined as integral over the interval [-1,+1] of the square of the polynomials. Cf. the Courant-Hilbert reference. REFERENCES R. Courant, D. Hilbert, Methoden der mathematischen Physik, Bd.I, 3. Auflage, Springer, pp. 73-4. LINKS Wolfdieter Lang, Norm square, rationals and more. FORMULA a(n) = numerator(N2(n)/2) with N2(n)/2:=(1/(2*n+1))*((2^n)/binomial(2*n,n))^2. N2(n)/2 = (1/(2*n+1))*(1/L(n))^2 with L(n)= A001790(n)/A060818(n), the leading coefficient of the Legendre polynomial P_n(x), in lowest terms. Bisection: a(2*n)=a(2*n+1) = A056982(n), n>=0. EXAMPLE Rationals a(n)/A069955(n): [1, 1/3, 4/45, 4/175, 64/11025, 64/43659, 256/693693, ...]. Rationals N2(n): [2, 2/3, 8/45, 8/175, 128/11025, 128/43659, 512/693693,...]. PROG (PARI) a(n) = numerator((1/(2*n+1))*((2^n)/binomial(2*n, n))^2); \\ Michel Marcus, Aug 11 2019 (Julia) bitcount(n) = sum(digits(n, base=2)) a(n) = 4^(n - bitcount(n)) # Peter Luschny, Oct 01 2019 CROSSREFS Cf. A000120, A069955 (denominators of N2(n) as defined in the comments). Sequence in context: A212328 A214615 A206489 * A119600 A244027 A219796 Adjacent sequences:  A124396 A124397 A124398 * A124400 A124401 A124402 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Nov 10 2006 EXTENSIONS New name by Peter Luschny, Oct 01 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 15:29 EDT 2021. Contains 346359 sequences. (Running on oeis4.)