login
A124399
a(n) = 4^(n - bitcount(n)) where bitcount(n) = A000120(n).
1
1, 1, 4, 4, 64, 64, 256, 256, 16384, 16384, 65536, 65536, 1048576, 1048576, 4194304, 4194304, 1073741824, 1073741824, 4294967296, 4294967296, 68719476736, 68719476736, 274877906944, 274877906944, 17592186044416, 17592186044416
OFFSET
0,3
COMMENTS
Numerators of one half of norm square of monic Legendre polynomials p_n(x).
The denominators of these polynomials are given by A069955.
The rationals N2(n) = 2*a(n)/A069955(n) give the minimal norm square for real monic polynomials. The norm square is defined as integral over the interval [-1,+1] of the square of the polynomials. Cf. the Courant-Hilbert reference.
REFERENCES
Richard Courant and David Hilbert, Methoden der mathematischen Physik, Bd. I, 3, Auflage, Springer, 1993, pp. 73-74.
FORMULA
a(n) = numerator(N2(n)/2) with N2(n)/2:=(1/(2*n+1))*((2^n)/binomial(2*n,n))^2.
N2(n)/2 = (1/(2*n+1))*(1/L(n))^2 with L(n)= A001790(n)/A060818(n), the leading coefficient of the Legendre polynomial P_n(x), in lowest terms.
Bisection: a(2*n)=a(2*n+1) = A056982(n), n>=0.
EXAMPLE
Rationals a(n)/A069955(n): [1, 1/3, 4/45, 4/175, 64/11025, 64/43659, 256/693693, ...].
Rationals N2(n): [2, 2/3, 8/45, 8/175, 128/11025, 128/43659, 512/693693,...].
MATHEMATICA
a[n_] := 4^(n - DigitCount[n, 2, 1]); Array[a, 25, 0] (* Amiram Eldar, Jul 25 2023 *)
PROG
(PARI) a(n) = numerator((1/(2*n+1))*((2^n)/binomial(2*n, n))^2); \\ Michel Marcus, Aug 11 2019
(Julia)
bitcount(n) = sum(digits(n, base=2))
a(n) = 4^(n - bitcount(n)) # Peter Luschny, Oct 01 2019
CROSSREFS
Cf. A000120, A001790, A056982, A060818, A069955 (denominators of N2(n) as defined in the comments).
Sequence in context: A212328 A214615 A206489 * A119600 A244027 A219796
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 10 2006
EXTENSIONS
New name by Peter Luschny, Oct 01 2019
STATUS
approved