login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124399
a(n) = 4^(n - bitcount(n)) where bitcount(n) = A000120(n).
1
1, 1, 4, 4, 64, 64, 256, 256, 16384, 16384, 65536, 65536, 1048576, 1048576, 4194304, 4194304, 1073741824, 1073741824, 4294967296, 4294967296, 68719476736, 68719476736, 274877906944, 274877906944, 17592186044416, 17592186044416
OFFSET
0,3
COMMENTS
Numerators of one half of norm square of monic Legendre polynomials p_n(x).
The denominators of these polynomials are given by A069955.
The rationals N2(n) = 2*a(n)/A069955(n) give the minimal norm square for real monic polynomials. The norm square is defined as integral over the interval [-1,+1] of the square of the polynomials. Cf. the Courant-Hilbert reference.
REFERENCES
Richard Courant and David Hilbert, Methoden der mathematischen Physik, Bd. I, 3, Auflage, Springer, 1993, pp. 73-74.
FORMULA
a(n) = numerator(N2(n)/2) with N2(n)/2:=(1/(2*n+1))*((2^n)/binomial(2*n,n))^2.
N2(n)/2 = (1/(2*n+1))*(1/L(n))^2 with L(n)= A001790(n)/A060818(n), the leading coefficient of the Legendre polynomial P_n(x), in lowest terms.
Bisection: a(2*n)=a(2*n+1) = A056982(n), n>=0.
EXAMPLE
Rationals a(n)/A069955(n): [1, 1/3, 4/45, 4/175, 64/11025, 64/43659, 256/693693, ...].
Rationals N2(n): [2, 2/3, 8/45, 8/175, 128/11025, 128/43659, 512/693693,...].
MATHEMATICA
a[n_] := 4^(n - DigitCount[n, 2, 1]); Array[a, 25, 0] (* Amiram Eldar, Jul 25 2023 *)
PROG
(PARI) a(n) = numerator((1/(2*n+1))*((2^n)/binomial(2*n, n))^2); \\ Michel Marcus, Aug 11 2019
(Julia)
bitcount(n) = sum(digits(n, base=2))
a(n) = 4^(n - bitcount(n)) # Peter Luschny, Oct 01 2019
CROSSREFS
Cf. A000120, A001790, A056982, A060818, A069955 (denominators of N2(n) as defined in the comments).
Sequence in context: A212328 A214615 A206489 * A119600 A244027 A219796
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 10 2006
EXTENSIONS
New name by Peter Luschny, Oct 01 2019
STATUS
approved