|
|
A144451
|
|
Triangle A(n,k) read by rows: A(n,1)=A(n,n)=1 and A(n,k) = A(n-2,k-1) - 2*A(n,k-1) + 1 for 1<k<n.
|
|
1
|
|
|
1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 2, -3, 8, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, -4, 17, -32, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,9
|
|
COMMENTS
|
Row sums are 1, 2, 2, 4, 3, 4, 4, 10, 5, -14, 6, 128, 7, -720, 8, 4630, 9, -30194, 10, ...
|
|
LINKS
|
Table of n, a(n) for n=1..55.
|
|
FORMULA
|
A(n,k) = A(n-2,k-1) - 2*A(n,k-1) + 1.
|
|
EXAMPLE
|
1;
1, 1;
1, 0, 1;
1, 0, 2, 1;
1, 0, 1, 0, 1;
1, 0, 1, 1, 0, 1;
1, 0, 1, 0, 1, 0, 1;
1, 0, 1, 0, 2, -3, 8, 1;
1, 0, 1, 0, 1, 0, 1, 0, 1;
1, 0, 1, 0, 1, 1, -4, 17, -32, 1;
|
|
MAPLE
|
A144451 := proc(n, k)
option remember;
if k < 1 or k > n then
0 ;
elif n = 1 or n=k then
1;
else
procname(n-2, k-1)-2*procname(n, k-1)+1 ;
end if;
end proc: # R. J. Mathar, Jul 21 2015
|
|
MATHEMATICA
|
A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := A[n, k] = A[n - 2, k - 1] - 2*A[n, k - 1] + 1; a = Table[A[n, k], {n, 10}, {k, n}]; Flatten[a]
|
|
CROSSREFS
|
Sequence in context: A133300 A337101 A178779 * A259287 A342592 A090464
Adjacent sequences: A144448 A144449 A144450 * A144452 A144453 A144454
|
|
KEYWORD
|
tabl,sign,easy
|
|
AUTHOR
|
Roger L. Bagula and Gary W. Adamson, Oct 06 2008
|
|
STATUS
|
approved
|
|
|
|