login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144453 a(n) = A061039(8*n+5). 2
16, 160, 16, 832, 1360, 224, 2800, 3712, 176, 5920, 7216, 320, 10192, 11872, 1520, 15616, 17680, 736, 22192, 24640, 336, 29920, 32752, 3968, 38800, 42016, 560, 48832, 52432, 2080, 60016, 64000, 7568, 72352, 76720, 3008, 85840, 90592, 3536, 100480, 105616 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Numerators of 16*(n+1)*(4*n+1)/(9*(8*n+5)^2), so all numbers are multiples of 16 because the denominator is always odd.

Interpreted modulo 9, all numbers from 1 to 8 appear: a(20) is the first entry = 3 (mod 9), a(26) is the first entry = 2 (mod 9), a(80) is the first entry = 6 (mod 9).

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

FORMULA

a(n) = A061039(8*n+5).

a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81) for n>83. - Colin Barker, Oct 10 2016

MATHEMATICA

Numerator[1/9 - 1/(8*Range[0, 100] +5)^2] (* G. C. Greubel, Mar 07 2022 *)

PROG

(Sage) [numerator(1/9 - 1/(8*n+5)^2) for n in (0..100)] # G. C. Greubel, Mar 07 2022

CROSSREFS

Cf. A020806, A141425, A146537.

Sequence in context: A220630 A041005 A180798 * A121036 A224058 A073394

Adjacent sequences:  A144450 A144451 A144452 * A144454 A144455 A144456

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Oct 07 2008

EXTENSIONS

Edited and extended by R. J. Mathar, Oct 24 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 22:08 EDT 2022. Contains 354122 sequences. (Running on oeis4.)