|
|
|
|
16, 160, 16, 832, 1360, 224, 2800, 3712, 176, 5920, 7216, 320, 10192, 11872, 1520, 15616, 17680, 736, 22192, 24640, 336, 29920, 32752, 3968, 38800, 42016, 560, 48832, 52432, 2080, 60016, 64000, 7568, 72352, 76720, 3008, 85840, 90592, 3536, 100480, 105616
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Numerators of 16*(n+1)*(4*n+1)/(9*(8*n+5)^2), so all numbers are multiples of 16 because the denominator is always odd.
Interpreted modulo 9, all numbers from 1 to 8 appear: a(20) is the first entry = 3 (mod 9), a(26) is the first entry = 2 (mod 9), a(80) is the first entry = 6 (mod 9).
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
|
|
FORMULA
|
a(n) = A061039(8*n+5).
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81) for n>83. - Colin Barker, Oct 10 2016
|
|
MATHEMATICA
|
Numerator[1/9 - 1/(8*Range[0, 100] +5)^2] (* G. C. Greubel, Mar 07 2022 *)
|
|
PROG
|
(Sage) [numerator(1/9 - 1/(8*n+5)^2) for n in (0..100)] # G. C. Greubel, Mar 07 2022
|
|
CROSSREFS
|
Cf. A020806, A141425, A146537.
Sequence in context: A220630 A041005 A180798 * A121036 A224058 A073394
Adjacent sequences: A144450 A144451 A144452 * A144454 A144455 A144456
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Paul Curtz, Oct 07 2008
|
|
EXTENSIONS
|
Edited and extended by R. J. Mathar, Oct 24 2008
|
|
STATUS
|
approved
|
|
|
|