OFFSET
0,1
COMMENTS
Numerators of 16*(n+1)*(4*n+1)/(9*(8*n+5)^2), so all numbers are multiples of 16 because the denominator is always odd.
Interpreted modulo 9, all numbers from 1 to 8 appear: a(20) is the first entry = 3 (mod 9), a(26) is the first entry = 2 (mod 9), a(80) is the first entry = 6 (mod 9).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
a(n) = A061039(8*n+5).
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81) for n>83. - Colin Barker, Oct 10 2016
MATHEMATICA
Numerator[1/9 - 1/(8*Range[0, 100] +5)^2] (* G. C. Greubel, Mar 07 2022 *)
PROG
(Sage) [numerator(1/9 - 1/(8*n+5)^2) for n in (0..100)] # G. C. Greubel, Mar 07 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 07 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Oct 24 2008
STATUS
approved