The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144456 A triangle sequence of coefficients of polynomials with roots that are inverse primes: a(n)=Prime[n](a(n-1); p(x,n)=If[n == 0, 1, a[n - 1]*(x - a[n - 1])*Product[x + 1/Prime[i], {i, 1, n - 1}]]. (Correction to previous submission). 0
 1, -1, 1, -2, -3, 2, -6, -29, -31, 6, -30, -299, -920, -869, 30, -210, -3569, -21193, -51769, -43853, 210, -2310, -64679, -665252, -3136692, -6760012, -5333173, 2310, -30030, -1231229, -19579519, -153212408, -618042328, -1212020249, -901760539, 30030, -510510, -29609579, -688677932 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Row sums are: {1, 0, -3, -60, -2088, -120384, -15959808, -2905846272, -889216828416, -337903021854720, -186522486457466880}. LINKS FORMULA a(n)=Prime[n](a(n-1); p(x,n)=If[n == 0, 1, a[n - 1]*(x - a[n - 1])*Product[x + 1/Prime[i], {i, 1, n - 1}]]; t(n,m)=coefficients(p(x,n)). EXAMPLE {1}, {-1, 1}, {-2, -3, 2}, {-6, -29, -31, 6}, {-30, -299, -920, -869, 30}, {-210, -3569, -21193, -51769, -43853, 210}, {-2310, -64679, -665252, -3136692, -6760012, -5333173, 2310}, MATHEMATICA a[0] = 1; a[n_] := a[n] = Prime[n]*a[n - 1]; p[x_, n_] := If[n == 0, 1, a[n - 1]*(x - a[n - 1])*Product[x + 1/Prime[i], {i, 1, n - 1}]]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A276551 A109878 A104565 * A262427 A333986 A349664 Adjacent sequences:  A144453 A144454 A144455 * A144457 A144458 A144459 KEYWORD uned,sign AUTHOR Roger L. Bagula and Gary W. Adamson, Oct 07 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 14:40 EST 2022. Contains 350455 sequences. (Running on oeis4.)