login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144459
a(n) = (3*n+1)*(5*n+1).
1
1, 24, 77, 160, 273, 416, 589, 792, 1025, 1288, 1581, 1904, 2257, 2640, 3053, 3496, 3969, 4472, 5005, 5568, 6161, 6784, 7437, 8120, 8833, 9576, 10349, 11152, 11985, 12848, 13741, 14664, 15617, 16600, 17613, 18656, 19729, 20832, 21965, 23128, 24321, 25544, 26797, 28080
OFFSET
0,2
COMMENTS
This appears in a "diagonal" scan through the numerators of the fractions of the hydrogen spectrum: A005563(4), A061037(9), A061039(13), etc.
a(n) mod 9 is a sequence of period length 9: repeat 1, 6, 5, 7, 3, 2, 4, 0, 8 (a permutation of A142069).
FORMULA
a(n) = A016777(n)*A016861(n).
a(n) mod 10 = A131579(n+7).
G.f.: (1+21*x+8*x^2) / (1-x)^3 . - R. J. Mathar, Jul 01 2011
a(0)=1, a(1)=24, a(2)=77, a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Harvey P. Dale, May 02 2015
E.g.f.: (1 + 23*x + 15*x^2)*exp(x). - G. C. Greubel, Sep 20 2018
Sum_{n>=0} 1/a(n) = sqrt(2 + 3/sqrt(5) - sqrt(3 + 6/sqrt(5)))*Pi/(2*sqrt(6)) + sqrt(5)*log(phi)/4 + 5*log(5)/8 - 3*log(3)/4, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 17 2023
MATHEMATICA
Table[(3n+1)(5n+1), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 24 , 77}, 50] (* Harvey P. Dale, Jul 16 2014 *)
PROG
(Magma) [(3*n+1)*(5*n+1): n in [0..40]]; // Vincenzo Librandi, Aug 07 2011
(PARI) a(n)=(3*n+1)*(5*n+1) \\ Charles R Greathouse IV, Jun 17 2017
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 08 2008
STATUS
approved