login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144455 A triangle sequence of coefficients of polynomials with roots that are inverse primes: a(n)=Prime[n](a(n-1); p(x,n)=If[n == 0, 1, a[n - 1]*(x - a[n - 1])*Product[x + Prime[i], {i, 1, n - 1}]]. 0
1, -1, 1, -8, 0, 2, -216, -144, -6, 6, -27000, -27000, -8070, -600, 30, -9261000, -10848600, -4402230, -728490, -40530, 210, -12326391000, -15613428600, -7239662430, -1533659820, -148745520, -5271420, 2310, -27081081027000, -36396684324000, -18558752282070, -4600370144370 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Row sums are:

{1, 0, -6, -360, -62640, -25280640, -36867156480, -87262563548160, -453954083074652160, -3277554562054009036800, -41611836823332419189145600}.

LINKS

Table of n, a(n) for n=1..32.

FORMULA

a(n)=Prime[n](a(n-1); p(x,n)=If[n == 0, 1, a[n - 1]*(x - a[n - 1])*Product[x + Prime[i], {i, 1, n - 1}]]; t(n,m)=coefficients(p(x,n)).

EXAMPLE

{1},

{-1, 1},

{-8, 0, 2},

{-216, -144, -6, 6},

{-27000, -27000, -8070, -600,30},

{-9261000, -10848600, -4402230, -728490, -40530, 210},

{-12326391000, -15613428600, -7239662430, -1533659820, -148745520, -5271420, 2310},

MATHEMATICA

a[0] = 1; a[n_] := a[n] = Prime[n]*a[n - 1]; p[x_, n_] := If[n == 0, 1, a[n - 1]*(x - a[n - 1])*Product[x + Prime[i], {i, 1, n - 1}]]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%]

CROSSREFS

Sequence in context: A094240 A200093 A179068 * A251866 A300713 A020837

Adjacent sequences:  A144452 A144453 A144454 * A144456 A144457 A144458

KEYWORD

uned,sign

AUTHOR

Roger L. Bagula and Gary W. Adamson, Oct 07 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 02:18 EDT 2022. Contains 353933 sequences. (Running on oeis4.)