login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373513
Decimal expansion of 3*zeta(3)/2.
0
1, 8, 0, 3, 0, 8, 5, 3, 5, 4, 7, 3, 9, 3, 9, 1, 4, 2, 8, 0, 9, 9, 6, 0, 7, 2, 4, 2, 2, 6, 7, 1, 7, 4, 9, 8, 6, 1, 4, 7, 4, 7, 9, 4, 3, 8, 5, 1, 0, 7, 4, 8, 3, 2, 2, 6, 8, 8, 4, 0, 7, 3, 3, 3, 0, 1, 2, 7, 5, 7, 3, 0, 8, 6, 7, 9, 4, 6, 9, 6, 3, 5, 2, 7, 9, 6, 8, 3, 8, 1, 0
OFFSET
1,2
LINKS
R. Barbieri, J. A. Mignaco and E. Remiddi, Electron form factors up to fourth order. I., Il Nuovo Cim. 11A (4) (1972) 824-864, Table II (2).
Chenli Li, Wenchang Chu, Improper integrals involving powers of Inverse Trigonometric and hyperbolic Functions, Mathematics 10 (16) (2022) 2980
FORMULA
Equals Integral_{x=0..1} log^2(x)/(x+1) dx = -2*Integral_{x=0..1} log(x)*log(1+x)/x dx.
Equals 3*A002117/2 = 2*A197070.
Equals A258750/Pi. - Hugo Pfoertner, Jun 10 2024
Equals Integral_{x=0..1} arctanh^3(x)/x^2 [Li]. - R. J. Mathar, Jun 11 2024
EXAMPLE
1.80308535473939142809960724226717498614747943851...
MAPLE
3*Zeta(3)/2 ; evalf(%) ;
MATHEMATICA
RealDigits[3*Zeta[3]/2, 10, 120][[1]] (* Amiram Eldar, Jun 10 2024 *)
PROG
(PARI) 3*zeta(3)/2 \\ Michel Marcus, Jun 10 2024
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Jun 07 2024
STATUS
approved