login
A354796
Triangle read by rows. T(n, k) = Gamma(k + n) / k! for n >= 1 and 0 <= k <= n, T(0, 0) = 1.
1
1, 1, 1, 1, 2, 3, 2, 6, 12, 20, 6, 24, 60, 120, 210, 24, 120, 360, 840, 1680, 3024, 120, 720, 2520, 6720, 15120, 30240, 55440, 720, 5040, 20160, 60480, 151200, 332640, 665280, 1235520, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640, 17297280, 32432400
OFFSET
0,5
FORMULA
T(n, k) = binomial(n + k - 1, n - 1)*(n - 1)! for n >= 1.
T(n, n) = Sum_{k=0..n-1} T(n, k). Row sums are 2*A006963(n + 1) for n >= 1.
EXAMPLE
Table T(n, k) begins:
[0] 1;
[1] 1, 1;
[2] 1, 2, 3;
[3] 2, 6, 12, 20;
[4] 6, 24, 60, 120, 210;
[5] 24, 120, 360, 840, 1680, 3024;
[6] 120, 720, 2520, 6720, 15120, 30240, 55440;
[7] 720, 5040, 20160, 60480, 151200, 332640, 665280, 1235520;
MAPLE
T := (n, k) -> ifelse(n = 0, 1, GAMMA(k + n) / GAMMA(k + 1));
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
MATHEMATICA
T[0, 0] = 1; T[n_, k_] := Gamma[n + k]/Gamma[k + 1]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 11 2022 *)
CROSSREFS
Cf. A006963 (main diagonal),
Sequence in context: A143806 A276551 A109878 * A104565 A144456 A262427
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jun 11 2022
STATUS
approved