login
A143806
Eigentriangle of A130534.
1
1, 1, 1, 2, 3, 2, 6, 11, 12, 7, 24, 50, 70, 70, 36, 120, 274, 450, 595, 540, 250, 720, 1764, 3248, 5145, 6300, 5250, 2229
OFFSET
0,4
COMMENTS
Right border = A143805 (1, 1, 2, 7, 36, 250,...) = row sums shifted one place to the left, = (1, 2, 7, 36, 250,...). Sum of n-th row terms = rightmost term of next row.
A130534 = the Stirling cycle numbers:
1;
1, 1;
2, 3, 1;
6, 11, 6, 1;
...
The triangle by rows, applies termwise products of the eigensequence terms of A130534: (1, 1, 2, 7, 36, 250,...) = A143805; to row terms of A130534. Thus row 3 = (6, 11, 12, 7) = (6, 11, 6, 1) and termwise product of the first 4 terms of A143805: (1, 1, 2, 7).
FORMULA
Triangle read by rows, A130534 * (A143805 * 0^(n-k)); 0<=k<=n.
EXAMPLE
First few rows of the triangle:
1;
1, 1;
2, 3, 2;
6, 11, 12, 7;
24, 50, 70, 70, 36;
120, 274, 450, 595, 540, 250;
720, 1764, 3248, 5145, 6300, 5250, 2229;
...
CROSSREFS
Sequence in context: A298854 A355266 A188881 * A276551 A109878 A354796
KEYWORD
nonn,tabl,more
AUTHOR
Gary W. Adamson, Sep 01 2008
STATUS
approved