login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188881 Triangle of coefficients arising from an expansion of Integral( exp(exp(exp(x))), dx). 2
1, 1, 1, 2, 3, 2, 6, 11, 12, 6, 24, 50, 70, 60, 24, 120, 274, 450, 510, 360, 120, 720, 1764, 3248, 4410, 4200, 2520, 720, 5040, 13068, 26264, 40614, 47040, 38640, 20160, 5040, 40320, 109584, 236248, 403704, 538776, 544320, 393120, 181440, 40320 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Also the coefficients of the polynomials which are generated by the exponential generating function -log(1 + x*log(1 - t)). The polynomials might be called 'logarithmic polynomials'. Note also A003713, and A263634 for a different use of this term. See the paper of F. Qi for a related, but different family of polynomials. - Peter Luschny, Jul 11 2020
Edgar remarks that these coefficients are related to Stirling numbers of the second kind (cf. A008277).
The first column and the main diagonal are the factorials (A000142). The n-th entry on the first subdiagonal is A001710(n+1). The second column is A000254, the third column is 2*A000399, and the fourth column is 6*A000454. In general, the k-th column is (k-1)!*s(n,k), where s(n,k) is the unsigned Stirling number of the first kind. - Nathaniel Johnston, Apr 15 2011
With offset n=0, k=0 : triangle T(n,k), read by rows,given by T(n,k) = k*T(n-1, k-1) + n*T(n-1, k) with T(0, 0) = 1. - Philippe Deléham, Oct 04 2011
LINKS
G. A. Edgar, Transseries for beginners, arXiv:0801.4877 [math.RA], 2008-2009.
F. Qi, On multivariate logarithmic polynomials and their properties, Indagationes Mathematicae (2018).
FORMULA
T(n, k) = (k-1)!*Sum_{i=0..k}(Stirling2(i,k)*(-1)^(n-i)*Stirling1(n,i)) =
T(n, k) = Sum_{i=0..k}(W(i,k)*(-1)^(n-i)*Stirling1(n,i)), where W(n,k) is the Worpitzky triangle A028246. - Vladimir Kruchinin, Apr 17 2015.
T(n,k) = [x^k] n!*[t^n](-log(1 + x*log(1 - t))). - Peter Luschny, Jul 10 2020
EXAMPLE
Triangle begins:
1
1 1
2 3 2
6 11 12 6
24 50 70 60 24
120 274 450 510 360 120
...
MAPLE
S:=proc(n, k)global s:if(n=0 and k=0)then s[0, 0]:=1:elif(n=0 or k=0)then s[n, k]:=0:elif(not type(s[n, k], integer))then s[n, k]:=(n-1)*S(n-1, k)+S(n-1, k-1):fi:return s[n, k]:end:
T:=proc(n, k)return (k-1)!*S(n, k); end:
for n from 1 to 6 do for k from 1 to n do print(T(n, k)):od:od: # Nathaniel Johnston, Apr 15 2011
# With offset n = 0, k = 0:
A188881 := (n, k) -> k!*abs(Stirling1(n+1, k+1)):
seq(seq(A188881(n, k), k=0..n), n=0..8); # Peter Luschny, Oct 19 2017
# Alternative:
gf := -log(1 + x*log(1 - t)): ser := series(gf, t, 18):
toeff := n -> n!*expand(coeff(ser, t, n)):
seq(print(seq(coeff(toeff(n), x, k), k=1..n)), n=1..8); # Peter Luschny, Jul 10 2020
MATHEMATICA
Table[(k - 1)! * Sum[StirlingS2[i, k] * (-1)^(n - i) * StirlingS1[n, i], {i, 0, k}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Apr 17 2015 *)
PROG
(Maxima)
T(n, k):=(k-1)!*sum(stirling2(i, k)*(-1)^(n-i)*stirling1(n, i), i, 0, k); /* Vladimir Kruchinin, Apr 17 2015 */
(PARI) {T(n, k) = if( k<1 || k>n, 0, (n-1)! * polcoeff( (x / (1 - exp(-x * (1 + x * O(x^n)))))^n, n-k))}; /* Michael Somos, May 10 2017 */
(PARI) {T(n, k) = if( k<1 || n<0, 0, (k-1)! * sum(i=0, k, stirling(i, k, 2) * (-1)^(n-i) * stirling(n, i, 1)))}; /* Michael Somos, May 10 2017 */
CROSSREFS
Sequence in context: A059446 A298854 A355266 * A143806 A276551 A109878
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Apr 14 2011
EXTENSIONS
a(11)-a(45) from Nathaniel Johnston, Apr 15 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 07:53 EDT 2024. Contains 371964 sequences. (Running on oeis4.)