Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Mar 07 2022 02:06:25
%S 7,1,55,91,5,187,247,35,391,475,7,667,775,11,1015,1147,143,1435,1591,
%T 65,1927,2107,85,2491,2695,323,3127,3355,133,3835,4087,161,4615,4891,
%U 575,5467,5767,75,6391,6715,87,7387,7735,899,8455,8827,341,9595,9991,385,10807,11227,1295,12091,12535
%N Second bisection of A061039.
%C Related to the Paschen spectrum of hydrogen. Contains only odd numbers. The sequence read modulo 9 is "full" and contains all numbers from 0 to 8.
%H G. C. Greubel, <a href="/A144450/b144450.txt">Table of n, a(n) for n = 1..5000</a>
%H <a href="/index/Rec#order_81">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
%F a(n) = A061039(2*n+2).
%F a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81). - _G. C. Greubel_, Mar 06 2022
%t Numerator[1/9 - 1/(2*Range[2, 100])^2] (* _G. C. Greubel_, Mar 06 2022 *)
%o (Sage) [numerator(1/9 -1/(2*n+2)^2) for n in (1..100)] # _G. C. Greubel_, Mar 06 2022
%Y Cf. A061039, A144448.
%K nonn
%O 1,1
%A _Paul Curtz_, Oct 06 2008
%E Formula index corrected, extended by _R. J. Mathar_, Dec 02 2008