login
A193637
a(n) = a(n-1)^2 - n^(n+1).
1
0, -1, -7, -32, 0, -15625, 243860689, 59468035633789920, 3536447262141707692104062559388672, 12506459237909580203511583184455022770672120296396568887010875139183
OFFSET
0,3
COMMENTS
Example of a recursive sequence which produces a table containing two zeros.
LINKS
Eric Weisstein's World of Mathematics, Recursive Sequence
FORMULA
a(0) = 0, a(n) = a(n-1)^2 - n^(n+1).
EXAMPLE
a(2) = -7 because a(1) = -1 and (-1)^2 - 2^(2+1) = -7.
MATHEMATICA
RecurrenceTable[{a[n] == a[n - 1]^2 - n^(n + 1), a[0] == 0}, a, {n, 10}]
PROG
(PARI) a=0; for(n=0, 10, print1(a=a^2-n^(n+1), ", "));
CROSSREFS
Sequence in context: A290969 A163083 A101329 * A214490 A360261 A164819
KEYWORD
easy,sign
AUTHOR
STATUS
approved