login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193638
Number of permutations of the multiset {1,1,1,2,2,2,3,3,3,...,n,n,n} with no two consecutive terms equal.
6
1, 0, 2, 174, 41304, 19606320, 16438575600, 22278418248240, 45718006789687680, 135143407245840698880, 553269523327347306412800, 3039044104423605600086688000, 21819823367694505460651694873600, 200345011881335747639978525387827200
OFFSET
0,3
LINKS
H. Eriksson and A. Martin, Enumeration of Carlitz multipermutations, arXiv:1702.04177 [math.CO], 2017.
FORMULA
a(n) = A190826(n) * n! for n >= 1.
a(n) = A193624(n)/6^n.
a(n) = Sum_{s+t+u=n} ((-1)^t*multinomial(n;s,t,u)*(3s+2t+u)!/(3!)^s. - Alexis Martin, Nov 16 2017.
a(n) = (1/6^n) * Sum_{j=0..2*n} Sum_{k=ceiling(j/2)..n} (n+j)! * binomial(2*k, j) * binomial(n, k) * (-3)^(n+k-j). - Tani Akinari, Sep 23 2012
a(n) = n*( (3*n-1)*(3*n^2-5*n+4)*a(n-1) +2*(n-1)*(6*n^2-9*n-1)*a(n-2) -4*n*(n-1)*(n-2)*a(n-3) )/(2*n-2). - Alois P. Heinz, Jun 05 2013
EXAMPLE
a(2) = 2 because there are two permutations of {1,1,1,2,2,2} avoiding equal consecutive terms: 121212 and 212121.
MAPLE
a:= proc(n) option remember; `if`(n<3, (n-1)*(3*n-2)/2,
n*((3*n-1)*(3*n^2-5*n+4) *a(n-1) +2*(n-1)*(6*n^2-9*n-1) *a(n-2)
-4*n*(n-1)*(n-2) *a(n-3))/(2*n-2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jun 05 2013
MATHEMATICA
a[n_]:= (1/6^n)*Sum[(n+j)!*Binomial[n, k]*Binomial[2k, j]*(-3)^(n+k-j), {j, 0, 2n}, {k, Ceiling[j/2], n}]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jul 22 2017, after Tani Akinari *)
PROG
(Maxima) a(n):= (1/6^n)*sum((n+j)!*sum(binomial(n, k)*binomial(2*k, j)* (-3)^(n+k-j), k, ceiling(j/2), n), j, 0, 2*n); /* Tani Akinari, Sep 23 2012 */
(Python)
from sympy.core.cache import cacheit
@cacheit
def a(n): return (n-1)*(3*n-2)//2 if n<3 else n*((3*n-1)*(3*n**2 - 5*n + 4)*a(n-1) + 2*(n-1)*(6*n**2 -9*n-1)*a(n-2) - 4*n*(n-1)*(n-2)*a(n- 3))//(2*n-2)
print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 22 2017, formula after Maple code
(Magma)
B:=Binomial;
f:= func< n, j | (&+[B(n, k)*B(2*k, j)*(-3)^(k-j): k in [Ceiling(j/2)..n]]) >;
A193638:= func< n | (-1/2)^n*(&+[Factorial(n+j)*f(n, j): j in [0..2*n]]) >;
[A193638(n): n in [0..30]]; // G. C. Greubel, Sep 22 2023
(SageMath)
b=binomial;
def f(j, n): return sum(b(n, k)*b(2*k, j)*(-3)^(k-j) for k in range((j//2), n+1))
def A193638(n): return (-1/2)^n*sum(factorial(n+j)*f(j, n) for j in range(2*n+1))
[A193638(n) for n in range(31)] # G. C. Greubel, Sep 22 2023
CROSSREFS
Cf. A114938 = similar, with two copies instead of three.
Cf. A193624 = arrangements of triples with no adjacent siblings.
Cf. A190826.
Sequence in context: A281958 A172231 A360478 * A215123 A321634 A219724
KEYWORD
nonn
AUTHOR
Andrew Woods, Aug 01 2011
STATUS
approved