login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102547
Triangle read by rows, formed from antidiagonals of the antidiagonals (A011973) of Pascal's triangle (A007318).
8
1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 5, 3, 1, 6, 6, 1, 7, 10, 1, 1, 8, 15, 4, 1, 9, 21, 10, 1, 10, 28, 20, 1, 1, 11, 36, 35, 5, 1, 12, 45, 56, 15, 1, 13, 55, 84, 35, 1, 1, 14, 66, 120, 70, 6, 1, 15, 78, 165, 126, 21, 1, 16, 91, 220, 210, 56, 1, 1, 17, 105, 286, 330, 126, 7, 1, 18, 120
OFFSET
0,7
COMMENTS
Row sums are A000930, antidiagonal sums are A003269.
Row n contains 1+floor(n/3) terms.
T(n,k) is the number of compositions of n+3 with k+1 parts, all at least 3. Example: T(9,2) = binomial(5,2) = 10 because we have 336, 363, 633, 345, 354, 435, 453, 534, 543, and 444. - Emeric Deutsch, Aug 15 2010
T(n+2,k) is the number of k-subsets of {1..n} with values at least 3 apart. For example, T(7,2) = 3 corresponds to the subsets {1,4},{1,5},{2,5} of {1..5}. - Enrique Navarrete, Dec 19 2021
LINKS
Richard J. Mathar, Tiling n x m rectangles with 1 X 1 and s X s squares, arXiv:1609.03964 [math.CO], 2016, Section 4.2.
Richard J. Mathar, Bivariate Generating Functions Enumerating Non-Bonding Dominoes on Rectangular Boards, arXiv:2404.18806 [math.CO], 2024. See p. 7.
Michel Rigo, Manon Stipulanti, and Markus A. Whiteland, Gapped Binomial Complexities in Sequences, Univ. Liège (Belgium 2023).
FORMULA
T(n,k) = binomial(n-2k,k) (0 <= k <= n/3). - Emeric Deutsch, Aug 15 2010
G.f.: 1/(1 - x)/(1 - y*x^3/(1 - x)) = 1/(1 - x - y*x^3). - Geoffrey Critzer, Jun 25 2014
EXAMPLE
Triangle begins:
1;
1;
1;
1, 1;
1, 2;
1, 3;
1, 4, 1;
1, 5, 3;
MAPLE
for n from 0 to 20 do seq(binomial(n-2*k, k), k = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form. - Emeric Deutsch, Aug 15 2010
MATHEMATICA
nn=20; Map[Select[#, #>0&]&, CoefficientList[Series[1/(1-x)/(1-y x^3/(1-x)), {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Jun 25 2014 *)
PROG
(Magma) /* As triangle */ [[Binomial(n-2*k, k): k in [0..n div 3]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 23 2019
CROSSREFS
Cf. A007318, A011973, A003269, A000930 (row sums), A349862 (max row values).
Sequence in context: A142593 A360285 A226248 * A305556 A177812 A280504
KEYWORD
nonn,tabf
AUTHOR
Gerald McGarvey, Feb 24 2005
STATUS
approved