OFFSET
0,7
COMMENTS
Row n contains 1+floor(n/3) terms.
T(n,k) is the number of compositions of n+3 with k+1 parts, all at least 3. Example: T(9,2) = binomial(5,2) = 10 because we have 336, 363, 633, 345, 354, 435, 453, 534, 543, and 444. - Emeric Deutsch, Aug 15 2010
T(n+2,k) is the number of k-subsets of {1..n} with values at least 3 apart. For example, T(7,2) = 3 corresponds to the subsets {1,4},{1,5},{2,5} of {1..5}. - Enrique Navarrete, Dec 19 2021
LINKS
Alois P. Heinz, Rows n = 0..250, flattened
Michael A. Allen, Connections between Combinations Without Specified Separations and Strongly Restricted Permutations, Compositions, and Bit Strings, arXiv:2409.00624 [math.CO], 2024. See p. 13.
Richard J. Mathar, Tiling n x m rectangles with 1 X 1 and s X s squares, arXiv:1609.03964 [math.CO], 2016, Section 4.2.
Richard J. Mathar, Bivariate Generating Functions Enumerating Non-Bonding Dominoes on Rectangular Boards, arXiv:2404.18806 [math.CO], 2024. See p. 7.
Michel Rigo, Manon Stipulanti, and Markus A. Whiteland, Gapped Binomial Complexities in Sequences, Univ. Liège (Belgium 2023).
FORMULA
T(n,k) = binomial(n-2k,k) (0 <= k <= n/3). - Emeric Deutsch, Aug 15 2010
G.f.: 1/(1 - x)/(1 - y*x^3/(1 - x)) = 1/(1 - x - y*x^3). - Geoffrey Critzer, Jun 25 2014
EXAMPLE
Triangle begins:
1;
1;
1;
1, 1;
1, 2;
1, 3;
1, 4, 1;
1, 5, 3;
MAPLE
for n from 0 to 20 do seq(binomial(n-2*k, k), k = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form. - Emeric Deutsch, Aug 15 2010
MATHEMATICA
nn=20; Map[Select[#, #>0&]&, CoefficientList[Series[1/(1-x)/(1-y x^3/(1-x)), {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Jun 25 2014 *)
PROG
(Magma) /* As triangle */ [[Binomial(n-2*k, k): k in [0..n div 3]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 23 2019
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gerald McGarvey, Feb 24 2005
STATUS
approved