login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349862
a(n) is the maximum value of binomial(n-2*k,k) with 0 <= k <= floor(n/3).
2
1, 1, 1, 1, 2, 3, 4, 5, 6, 10, 15, 21, 28, 36, 56, 84, 120, 165, 220, 330, 495, 715, 1001, 1365, 2002, 3003, 4368, 6188, 8568, 12376, 18564, 27132, 38760, 54264, 77520, 116280, 170544, 245157, 346104, 490314, 735471, 1081575, 1562275, 2220075, 3124550, 4686825, 6906900, 10015005, 14307150
OFFSET
0,5
EXAMPLE
a(7) = 5 since row n=7 of A102547 is 1, 5, 3 and the maximum value is 5.
a(20) = 495 since row n=20 of A102547 is 1, 18, 120, 364, 495, 252, 28. The maximum value of 495 occurs at k = 4.
MATHEMATICA
a[n_]:=Max[Table[Binomial[n-2k, k], {k, 0, Floor[n/3]}]]; Array[a, 49, 0] (* Stefano Spezia, Dec 06 2021 *)
PROG
(PARI) a(n) = vecmax(vector(n\3+1, k, k--; binomial(n-2*k, k))); \\ Michel Marcus, Dec 06 2021
(Python)
from math import comb
def A349862(n): return max(comb(n-2*k, k) for k in range(n//3+1)) # Chai Wah Wu, Jan 04 2022
CROSSREFS
Maximum row values of A102547.
Cf. A073028.
Sequence in context: A048569 A033085 A332320 * A006543 A133745 A337880
KEYWORD
nonn
AUTHOR
Enrique Navarrete, Dec 02 2021
STATUS
approved