login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of smooth Schubert varieties of type C_n.
0

%I #41 Apr 06 2021 20:18:12

%S 1,2,7,28,114,472,1988,8480,36474,157720,684404,2976994,12971206,

%T 56587676,247097170,1079749976,4720841314,20649303934,90353041092,

%U 395459463960,1731251197242,7580521689750,33197447406682,145400339328566,636901149067534,2790082285204966

%N Number of smooth Schubert varieties of type C_n.

%C Characterized as the signed permutations avoiding the list of patterns: '((1 -2) (-2 -1 -3) (3 -2 1) (3 -2 -1) (-3 2 -1) (-3 -2 1) (-3 -2 -1)(-2 -4 3 1) (3 4 1 2) (3 4 -1 2) (-3 4 1 2) (-3 4 -1 2)(-3 -4 -1 -2) (4 -1 3 -2) (4 2 3 1) (4 2 3 -1) (-4 2 3 1))

%H S. C. Billey, <a href="https://doi.org/10.1006/aima.1998.1744">Pattern Avoidance and Rational Smoothness of Schubert varieties</a>, Advances in Math, vol. 139 (1998) pp. 141-156.

%H E. Richmond and W. Slofstra, <a href="https://arxiv.org/abs/1510.06060">Staircase diagrams and enumeration of smooth Schubert varieties</a>, arXiv:1510.06060 [math.CO], 2015; J. Combin. Ser. A, Vol 150 (2017) pp. 328-376.

%F G.f.: ((1-7*x+15*x^2-11*x^3-2*x^4+5*x^5)+(x-x^2-x^3+3*x^4-x^5)*sqrt(1-4*x))/((1-x)^2*(1-6*x+8*x^2-4*x^3)). - _Edward Richmond_, Apr 06 2021

%o (PARI) seq(n)={Vec(((1-7*x+15*x^2-11*x^3-2*x^4+5*x^5)+(x-x^2-x^3+3*x^4-x^5)*sqrt(1-4*x + O(x^n)))/((1-x)^2*(1-6*x+8*x^2-4*x^3)))} \\ _Andrew Howroyd_, Apr 06 2021

%Y Cf. A061539.

%K nonn,easy

%O 0,2

%A _Sara Billey_, Apr 02 2013

%E a(0)=1 prepended and a(11) and beyond added by _Edward Richmond_, Apr 05 2021