login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224067
Number of cycles the reduced complex Collatz function using 1 + (2n-1)i takes to hit 1 + i, or 0 if this never happens.
2
1, 5, 5, 13, 9, 5, 13, 5, 9, 5, 17, 9, 13, 13, 5, 9, 21, 9, 9, 17, 0, 5, 9, 5, 13, 13, 13, 13, 17, 5, 9, 9, 0, 9, 9, 13, 13, 5, 17, 17, 17, 17, 17, 17, 21, 9, 5, 5, 25, 13, 5, 0, 25, 13, 13, 17, 9, 5, 13, 9, 33, 9, 9, 0, 0, 21, 9, 33, 21, 9, 13, 5, 13, 9, 17
OFFSET
1,2
COMMENTS
The complex Collatz function takes a complex number z to 3iz + (1+i). The resulting real part is divided by 2 until it's odd, and the same for the imaginary part.
The effect here is that say 4 + 14i is reduced to 1 + 7i.
The reduced complex Collatz function does all this in the same cycle.
Equals 0 for n = 21, 33, 52, 64, 65, 81, 82, 101, 103, 127, 129, 130, 163, 201, 204, 206, 253, 254, 256, 258, 259, 313...
This is conjectured to be infinite and the same as in A224165.
For example, 1 + 41i yields -61 + 1i, -1 + -91i, 137 + -1i, 1 + 103i, -77 + 1i, -1 + -115i, 173 + -1i, 1 + 65i, -97 + 1i, -1 + -145i, 109 + -1i, 1 + 41i - cyclic period 12.
From Robert G. Wilson v, Apr 04 2013: (Start)
If n>0 a(n) is odd, if n<1 a(n) is even. In fact, for n>0, a(n) is of the form 4k-3 and for n<1, a(n) is of the form 4k-2.
For a(k)=0 for k: 21, 33, 52, 64, 65, 81, 82, 101, 103, 127, 129, 130, 163, 201, 204, 206, 253, 254, 256, 258, 259, 313, 317, 320, 322, 324, 326, 396, 400, 401, 402, 404, 405, 407, 408, 409, 410, 501, 505, 506, 508, 511, 512, 514, 515, 518, 625, 635, 639, 641, 643, 645, 647, 648, 650, 791, 799, 800, 802, 803, 807, 811, 812, 814, 815, 816, 819, 822, 988, 989, 1003, ... .
Amongst the first 100000 positive terms, 6.726% are 0.
The first occurrence of 4k-3 occurs at: 1, 2, 5, 4, 11, 17, 49, 77, 61, 96, 76, 476, 377, 301, 509, 804, 587, 941, 1585, 1669, 1348, 533, 1683, 333, 132, 208, 656, 260, 820, 2585, 4091, 3229, 5101, 8068, 6381, 1261, 3980, 3148, 2485, 15684, 12409, 4907, 15473, 6125, 9681, 3825, 6044, 19100, 60235, 23797, 37605, 59425, 23477, 37099, 29313, 23161, ... .
The first negative terms beginning at 0: {2, 6, 2, 10, 6, 14, 6, 10, 6, 6, 2, 14, 6, 10, 10, 14, 6, 6, 6, 22, 10, 14, 14, 14, 14, 6, 6, 10, 0, 10, 10, 6, 14, 6, 6, 0, 18, 18, 6, 10, 10, 10, 2, 14, 10, 0, 14, 14, 14, 14, 6, 18, 10, 34, 10, 10, 6, 0, 10, 34, 22, 10, 14, 14, 14, 14, 6, 18, 18, 18, 6, ... .
For a(-k)=0 for k: {28, 35, 45, 57, 72, 112, 114, 142, 143, 144, 145, 175, 179, 180, 182, 224, 225, 228, 229, 230, 277, 283, 285, 287, 288, 289, 290, 356, 361, 363, 444, 448, 449, 450, 453, 456, 457, 458, 563, 567, 570, 572, 574, 575, 577, 578, 582, 702, 709, 711, 712, 713, 716, 718, 722, 724, 727, 728, 730, 877, 889, 896, 897, 898, 900, 901, 902, 907, 908, 909, 911, 912, 913, 914, 916, 918, 919, 920, 922, 1110, ... .
Amongst the first 100000 negative terms, 7.256% are 0.
The first occurrence of 4k-2, beginning with n=0, occurs at: 0, 1, 3, 5, 36, 19, 95, 75, 53, 84, 133, 211, 668, 571, 451, 659, 1043, 892, 1876, 1515, 1171, 1892, 747, 147, 116, 368, 291, 460, 1453, 2300, 3635, 2869, 4533, 14341, 2835, 2240, 3540, 2797, 4416, 6979, 5519, 17427, 6891, 10887, 8604, 1699, 5371, 33955, 53541, 42304, 66851, 52821, 41735, 65952, 13027, 82347, ... .
(End)
LINKS
Wikipedia, Collatz Problem
EXAMPLE
a(4) = 13 because rcC(1 + 7i) yields 1 + 7i, -5 + 1i, -1 + -7i, 11 + -1i, 1 + 17i, -25 + 1i, -1 + -37i, 7 + -1i, 1 + 11i, -1 + 1i, -1 + -1i, 1 + -1i, 1 + 1i which is 13 terms.
MATHEMATICA
g[z_] := Block[{x = 3I*z + (1 + I)}, While[ EvenQ[ Re[x]], x = Re[x]/2 + Im[x]I ]; While[ EvenQ[ Im[x]], x = Re[x] + Im[x]/2*I]; x]; f[n_] := f[n] = Block[{k = 1, z = 1 + (2n - 1)I}, While[z != (1 + I) && k < 1000001, z = g[z]; k++]; If[k == 1000001, k = 0, k]]; Array[f, 70] (* Robert G. Wilson v, Apr 04 2013 *)
PROG
(JavaScript)
for (b=1; b<150; b+=2) {
c=1;
r[0]=1; i[0]=b;
while (r[c-1]!=1 || i[c-1]!=1 && c<1000) {
i[c]=r[c-1]*3+1;
r[c]=-i[c-1]*3+1;
while (r[c]%2==0) r[c]/=2;
while (i[c]%2==0) i[c]/=2;
c++;
}
document.write(c+", ");
}
CROSSREFS
Cf. A224165.
Sequence in context: A339947 A206553 A122213 * A049735 A055526 A146984
KEYWORD
nonn,less
AUTHOR
Jon Perry, Apr 02 2013
STATUS
approved