login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099488
Expansion of (1-x)^2/((1+x^2)(1-4x+x^2)).
3
1, 2, 7, 28, 105, 390, 1455, 5432, 20273, 75658, 282359, 1053780, 3932761, 14677262, 54776287, 204427888, 762935265, 2847313170, 10626317415, 39657956492, 148005508553, 552364077718, 2061450802319, 7693439131560, 28712305723921
OFFSET
0,2
COMMENTS
A Chebyshev transform of the sequence A081294 which has with g.f. (1-2x)/(1-4x). The image of G(x) under the Chebyshev transform is (1/(1+x^2))G(x/(1+x^2)).
FORMULA
a(n)=4a(n-1)-2a(n-2)+4a(n-3); a(n)=sum{k=0..n, (0^k-2sin(pi*k/2))((2+sqrt(3))^(n-k+1)-(2-sqrt(3))^(n-k+1))/(2*sqrt(3))}; a(n)=sum{k=0..n, (0^k-2sin(pi*k/2))A001353(n-k)}; a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*(4^(n-2k)+0^(n-2k))/2}.
MATHEMATICA
CoefficientList[Series[(1-x)^2/((1+x^2)(1-4x+x^2)), {x, 0, 30}], x] (* or *) LinearRecurrence[{4, -2, 4, -1}, {1, 2, 7, 28}, 30] (* Harvey P. Dale, Jun 23 2015 *)
CROSSREFS
Sequence in context: A349329 A048504 A092465 * A289607 A068944 A215143
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 18 2004
STATUS
approved