login
A099488
Expansion of (1-x)^2/((1+x^2)(1-4x+x^2)).
3
1, 2, 7, 28, 105, 390, 1455, 5432, 20273, 75658, 282359, 1053780, 3932761, 14677262, 54776287, 204427888, 762935265, 2847313170, 10626317415, 39657956492, 148005508553, 552364077718, 2061450802319, 7693439131560, 28712305723921
OFFSET
0,2
COMMENTS
A Chebyshev transform of the sequence A081294 which has with g.f. (1-2x)/(1-4x). The image of G(x) under the Chebyshev transform is (1/(1+x^2))G(x/(1+x^2)).
FORMULA
a(n)=4a(n-1)-2a(n-2)+4a(n-3); a(n)=sum{k=0..n, (0^k-2sin(pi*k/2))((2+sqrt(3))^(n-k+1)-(2-sqrt(3))^(n-k+1))/(2*sqrt(3))}; a(n)=sum{k=0..n, (0^k-2sin(pi*k/2))A001353(n-k)}; a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*(4^(n-2k)+0^(n-2k))/2}.
MATHEMATICA
CoefficientList[Series[(1-x)^2/((1+x^2)(1-4x+x^2)), {x, 0, 30}], x] (* or *) LinearRecurrence[{4, -2, 4, -1}, {1, 2, 7, 28}, 30] (* Harvey P. Dale, Jun 23 2015 *)
CROSSREFS
Sequence in context: A349329 A048504 A092465 * A289607 A068944 A215143
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 18 2004
STATUS
approved