OFFSET
0,2
COMMENTS
A Chebyshev transform of the sequence A081294 which has with g.f. (1-2x)/(1-4x). The image of G(x) under the Chebyshev transform is (1/(1+x^2))G(x/(1+x^2)).
LINKS
Index entries for linear recurrences with constant coefficients, signature (4,-2,4,-1).
FORMULA
a(n)=4a(n-1)-2a(n-2)+4a(n-3); a(n)=sum{k=0..n, (0^k-2sin(pi*k/2))((2+sqrt(3))^(n-k+1)-(2-sqrt(3))^(n-k+1))/(2*sqrt(3))}; a(n)=sum{k=0..n, (0^k-2sin(pi*k/2))A001353(n-k)}; a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*(4^(n-2k)+0^(n-2k))/2}.
MATHEMATICA
CoefficientList[Series[(1-x)^2/((1+x^2)(1-4x+x^2)), {x, 0, 30}], x] (* or *) LinearRecurrence[{4, -2, 4, -1}, {1, 2, 7, 28}, 30] (* Harvey P. Dale, Jun 23 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 18 2004
STATUS
approved