login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099489
Expansion of (1-x+x^2)/((1+x^2)(1-4x+x^2)).
1
1, 3, 11, 42, 157, 585, 2183, 8148, 30409, 113487, 423539, 1580670, 5899141, 22015893, 82164431, 306641832, 1144402897, 4270969755, 15939476123, 59486934738, 222008262829, 828546116577, 3092176203479, 11540158697340
OFFSET
0,2
COMMENTS
A Chebyshev transform of the sequence A002001 which has with g.f. (1-x)/(1-4x). The image of G(x) under the Chebyshev transform is (1/(1+x^2))G(x/(1+x^2)).
FORMULA
a(n) = 4*a(n-1)-2*a(n-2)+4*a(n-3)-a(n-4). - corrected by Matthew House, Oct 22 2016
a(n) = sum{k=0..floor(n/2), binomial(n-k, k)*(-1)^k*(3*4^(n-2*k)+0^(n-2*k)/4}.
a(n) = sum{k=0..n, (0^k-sin(Pi*k/2))*((2+sqrt(3))^(n-k+1)-(2-sqrt(3))^(n-k+1))/(2*sqrt(3))}.
a(n) = sum{k=0..n, (0^k-sin(Pi*k/2))*A001353(n-k+1)}.
a(n) = 3*A001353(n+1)/4 +A056594(n)/4. - R. J. Mathar, Sep 21 2012
MATHEMATICA
CoefficientList[Series[(1-x+x^2)/((1+x^2)(1-4x+x^2)), {x, 0, 30}], x] (* or *_)
LinearRecurrence[{4, -2, 4, -1}, {1, 3, 11, 42}, 30] (* Harvey P. Dale, Dec 28 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 18 2004
STATUS
approved