OFFSET
0,2
COMMENTS
A Chebyshev transform of the sequence A002001 which has with g.f. (1-x)/(1-4x). The image of G(x) under the Chebyshev transform is (1/(1+x^2))G(x/(1+x^2)).
LINKS
Matthew House, Table of n, a(n) for n = 0..1739
Index entries for linear recurrences with constant coefficients, signature (4,-2,4,-1).
FORMULA
a(n) = 4*a(n-1)-2*a(n-2)+4*a(n-3)-a(n-4). - corrected by Matthew House, Oct 22 2016
a(n) = sum{k=0..floor(n/2), binomial(n-k, k)*(-1)^k*(3*4^(n-2*k)+0^(n-2*k)/4}.
a(n) = sum{k=0..n, (0^k-sin(Pi*k/2))*((2+sqrt(3))^(n-k+1)-(2-sqrt(3))^(n-k+1))/(2*sqrt(3))}.
a(n) = sum{k=0..n, (0^k-sin(Pi*k/2))*A001353(n-k+1)}.
MATHEMATICA
CoefficientList[Series[(1-x+x^2)/((1+x^2)(1-4x+x^2)), {x, 0, 30}], x] (* or *_)
LinearRecurrence[{4, -2, 4, -1}, {1, 3, 11, 42}, 30] (* Harvey P. Dale, Dec 28 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 18 2004
STATUS
approved