login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=7.
8

%I #62 Sep 08 2022 08:46:04

%S 0,1,7,35,154,637,2548,9996,38759,149205,571781,2184910,8333871,

%T 31750824,120875944,459957169,1749692735,6654580387,25306064602,

%U 96226175941,365880389868,1391138718116,5289228800247,20109822277181,76457523763621,290689756066542

%N a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=7.

%C This is the Berndt-type sequence number 18 for the argument 2*Pi/7 defined by the relation

%C a(n)*sqrt(7) = c(4)*s(1)^(2n+1) + c(2)*s(4)^(2n+1) + c(1)*s(2)^(2n+1) = (1/s(4))*s(1)^(2n+2) + (1/s(2))*s(4)^(2n+2) + (1/s(1))*s(2)^(2n+2), where c(j) := 2*cos(2*Pi*j/7) and s(j) := 2*sin(2*Pi*j/7) (for the sums of the respective even powers see A094429). For the proof of this formula see the Witula/Slota and Witula references.

%C The definitions of the other Berndt-type sequences for the argument 2*Pi/7 (with numbers from 1 to 17) are in the cross references.

%C We note that all numbers of the form a(n)*7^(-floor((n+1)/3)) = A217444(n) are integers.

%C It can be proved that Sum_{k=2..n}a(k) = 7*(a(n-1) - a(n-2)).

%H G. C. Greubel, <a href="/A217274/b217274.txt">Table of n, a(n) for n = 0..1000</a>

%H R. Witula, <a href="https://doi.org/10.1515/dema-2013-0418">Ramanujan type trigonometric formulas</a>, Demonstratio Math., Vol. XLV, No. 4, 2012, pp. 789-796.

%H Roman Witula and Damian Slota, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Slota/witula13.html">New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7</a>, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,7).

%F G.f.: x/(1-7*x+14*x^2-7*x^3).

%e Writing c(j) as cj and s(k) as sk,

%e we have 7*sqrt(7) = c4*s1^5 + c2*s4^5 + c1*s2^5

%e and c4*s1^13 + c2*s4^13 + c1*s2^13 = 4(c4*s1^11 + c2*s4^11 + c1*s2^11).

%e We note that a(9) = 87*a(3)*a(2)^2 and a(11) = 2*a(3)*a(5)*a(2)^2.

%t LinearRecurrence[{7,-14,7}, {0,1,7}, 30]

%t CoefficientList[Series[x/(1 - 7*x + 14*x^2 - 7*x^3), {x,0,50}], x] (* _G. C. Greubel_, Apr 16 2017 *)

%o (Maxima)

%o a[0]:0$

%o a[1]:1$

%o a[2]:7$

%o a[n]:=7*a[n-1] - 14*a[n-2] + 7*a[n-3];

%o makelist(a[n], n, 0, 25); /* _Martin Ettl_, Oct 11 2012 */

%o (PARI) concat(0, Vec(x/(1-7*x+14*x^2-7*x^3) + O(x^40))) \\ _Michel Marcus_, Jul 25 2015

%o (Magma) I:=[0,1,7]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Jul 26 2015

%Y Cf. A033304, A094429, A094430, A094648, A108716, A215007, A215008, A215143, A215493, A215494, A215510, A215512, A215575, A215694, A215695, A215794, A215817, A215828, A215877, A217444.

%K nonn,easy

%O 0,3

%A _Roman Witula_, Sep 29 2012