The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215493 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=4. 17
 0, 1, 4, 14, 49, 175, 637, 2352, 8771, 32928, 124166, 469567, 1779141, 6749211, 25623472, 97329337, 369821228, 1405502182, 5342323441, 20307982135, 77201862045, 293497548512, 1115812645899, 4242135876440, 16128056932078, 61317184775679, 233122447515741 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The Berndt-type sequence number 4 for the argument 2Pi/7 - see also A215007, A215008, A215143 and A215494. We have a(n)=A079309(n) for n=1..6, and A079309(7)-a(7)=1. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575. B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573. Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130. Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6 Index entries for linear recurrences with constant coefficients, signature (7,-14,7). FORMULA a(n)*sqrt(7) = s(1)^(2n-1) + s(2)^(2n-1) + s(4)^(2n-1), where s(j) := 2*Sin(2*Pi*j/7) (for the sums of the respective even powers see A215494, see also A094429, A115146). For the proof of these formula see Witula-Slota's paper. G.f.: x*(1-3*x)/(1-7*x+14*x^2-7*x^3). a(n) = A275830(2*n-1)/(7^n). - Kai Wang, May 25 2017 MATHEMATICA LinearRecurrence[{7, -14, 7}, {0, 1, 4}, 50] PROG (PARI) x='x+O('x^30); concat([0], Vec(x*(1-3*x)/(1-7*x+14*x^2-7*x^3))) \\ G. C. Greubel, Apr 23 2018 (Magma) I:=[0, 1, 4]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) +7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 23 2018 CROSSREFS Sequence in context: A316974 A278026 A001894 * A079309 A026630 A352456 Adjacent sequences: A215490 A215491 A215492 * A215494 A215495 A215496 KEYWORD nonn,easy AUTHOR Roman Witula, Aug 13 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 19:52 EST 2023. Contains 367462 sequences. (Running on oeis4.)