login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115146
Seventh convolution of A115140.
5
1, -7, 14, -7, 0, 0, 0, -1, -7, -35, -154, -637, -2548, -9996, -38760, -149226, -572033, -2187185, -8351070, -31865925, -121580760, -463991880, -1771605360, -6768687870, -25880277150, -99035193894, -379300783092, -1453986335186, -5578559816632, -21422369201800
OFFSET
0,2
LINKS
FORMULA
O.g.f.: 1/c(x)^7 = P(8, x) - x*P(7, x)*c(x) with the o.g.f. c(x):=(1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(8, x)=1-6*x+10*x^2-4*x^3 and P(7, x)=1-5*x+6*x^2-x^3.
a(n) = -C7(n-7), n>=7, with C7(n):=A000588(n+3) (seventh convolution of Catalan numbers). a(0)=1, a(1)=-7, a(2)=14, a(3)=-7, a(4)=a(5)=a(6)=0. [1, -7, 14, -7] is row n=7 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments.
D-finite with recurrence n*(n-7)*a(n) -2*(n-4)*(2*n-9)*a(n-1)=0. - R. J. Mathar, Sep 15 2024
MATHEMATICA
CoefficientList[Series[(1-7*x+14*x^2-7*x^3 +(1-5*x+6*x^2-x^3) *Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-7*x+14*x^2-7*x^3 +(1-5*x+6*x^2-x^3) *sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-7*x+14*x^2-7*x^3 +(1-5*x+6*x^2-x^3)*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019
(Sage) ((1-7*x+14*x^2-7*x^3 +(1-5*x+6*x^2-x^3)*sqrt(1-4*x))/2 ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Jan 13 2006
STATUS
approved