login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115143
a(n) = -4*binomial(2*n-5, n-4)/n for n > 0 and a(0) = 1.
6
1, -4, 2, 0, -1, -4, -14, -48, -165, -572, -2002, -7072, -25194, -90440, -326876, -1188640, -4345965, -15967980, -58929450, -218349120, -811985790, -3029594040, -11338026180, -42550029600, -160094486370, -603784920024, -2282138106804, -8643460269248, -32798844771700
OFFSET
0,2
COMMENTS
Previous name: Fourth convolution of A115140.
a(n+4) := - convolution ( A000108(n+1) ), n=0,1,... - Tilman Neumann, Jan 05 2009
Self-convolution of A115141. - R. J. Mathar, Sep 26 2012
LINKS
FORMULA
O.g.f.: 1/c(x)^4 = P(5, x) - x*P(4, x)*c(x) with the o.g.f. c(x) := (1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(5, x) = 1-3*x+x^2 and P(4, x) = 1-2*x.
a(n) = -C4(n-4), n>=4, with C4(n) := A002057(n) (fourth convolution of Catalan numbers). a(0)=1, a(1)=-4, a(2)=2, a(3)=0. [1, -4, 2] is row n=4 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments.
E.g.f.: 1 - 3*x + 1/2*x^2 - x*Q(0), where Q(k)= 1 - 2*x/(k+2 - (k+2)*(2*k+1)/(2*k+1 - (k+2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 28 2013
D-finite with recurrence n*(n-4)*a(n) -2*(2*n-5)*(n-3)*a(n-1)=0. - R. J. Mathar, Sep 15 2024
MAPLE
A115143 := n -> `if`(n=0, 1, -4*binomial(2*n-5, n-4)/n):
seq(A115143(n), n=0..28); # Peter Luschny, Feb 27 2017
A115143List := proc(m) local A, P, n; A := [1, -4, 2, 0]; P := [-1, 0];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
A := [op(A), P[-1]] od; A end: A115143List(27); # Peter Luschny, Mar 26 2022
MATHEMATICA
Join[{1}, Table[-4*Binomial[2n-5, n-4]/n, {n, 30}]] (* Harvey P. Dale, Dec 01 2017 *)
CoefficientList[Series[(1-4*x+2*x^2+(1-2*x)*Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-4*x+2*x^2 +(1-2*x)*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019
(Magma) [1, -4, 2] cat [-4*Binomial(2*n-5, n-4)/n: n in [3..30]]; // G. C. Greubel, Feb 12 2019
(Sage) [1, -4, 2] + [-4*binomial(2*n-5, n-4)/n for n in (3..30)] # G. C. Greubel, Feb 12 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Jan 13 2006
EXTENSIONS
Simpler name from Peter Luschny, Feb 27 2017
STATUS
approved