Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 15 2024 14:53:53
%S 1,-4,2,0,-1,-4,-14,-48,-165,-572,-2002,-7072,-25194,-90440,-326876,
%T -1188640,-4345965,-15967980,-58929450,-218349120,-811985790,
%U -3029594040,-11338026180,-42550029600,-160094486370,-603784920024,-2282138106804,-8643460269248,-32798844771700
%N a(n) = -4*binomial(2*n-5, n-4)/n for n > 0 and a(0) = 1.
%C Previous name: Fourth convolution of A115140.
%C a(n+4) := - convolution ( A000108(n+1) ), n=0,1,... - _Tilman Neumann_, Jan 05 2009
%C Self-convolution of A115141. - _R. J. Mathar_, Sep 26 2012
%H Seiichi Manyama, <a href="/A115143/b115143.txt">Table of n, a(n) for n = 0..1669</a>
%F O.g.f.: 1/c(x)^4 = P(5, x) - x*P(4, x)*c(x) with the o.g.f. c(x) := (1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(5, x) = 1-3*x+x^2 and P(4, x) = 1-2*x.
%F a(n) = -C4(n-4), n>=4, with C4(n) := A002057(n) (fourth convolution of Catalan numbers). a(0)=1, a(1)=-4, a(2)=2, a(3)=0. [1, -4, 2] is row n=4 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments.
%F E.g.f.: 1 - 3*x + 1/2*x^2 - x*Q(0), where Q(k)= 1 - 2*x/(k+2 - (k+2)*(2*k+1)/(2*k+1 - (k+2)/Q(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Apr 28 2013
%F D-finite with recurrence n*(n-4)*a(n) -2*(2*n-5)*(n-3)*a(n-1)=0. - _R. J. Mathar_, Sep 15 2024
%p A115143 := n -> `if`(n=0, 1, -4*binomial(2*n-5,n-4)/n):
%p seq(A115143(n), n=0..28); # _Peter Luschny_, Feb 27 2017
%p A115143List := proc(m) local A, P, n; A := [1,-4,2,0]; P := [-1,0];
%p for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
%p A := [op(A), P[-1]] od; A end: A115143List(27); # _Peter Luschny_, Mar 26 2022
%t Join[{1},Table[-4*Binomial[2n-5,n-4]/n,{n,30}]] (* _Harvey P. Dale_, Dec 01 2017 *)
%t CoefficientList[Series[(1-4*x+2*x^2+(1-2*x)*Sqrt[1-4*x])/2, {x,0,30}], x] (* _G. C. Greubel_, Feb 12 2019 *)
%o (PARI) my(x='x+O('x^30)); Vec((1-4*x+2*x^2 +(1-2*x)*sqrt(1-4*x))/2) \\ _G. C. Greubel_, Feb 12 2019
%o (Magma) [1,-4,2] cat [-4*Binomial(2*n-5,n-4)/n: n in [3..30]]; // _G. C. Greubel_, Feb 12 2019
%o (Sage) [1,-4,2] + [-4*binomial(2*n-5,n-4)/n for n in (3..30)] # _G. C. Greubel_, Feb 12 2019
%Y Cf. A115139 - A115142, A115144 - A115149, A099376, A000108.
%K sign,easy
%O 0,2
%A _Wolfdieter Lang_, Jan 13 2006
%E Simpler name from _Peter Luschny_, Feb 27 2017