login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275830 a(n) = (2*sqrt(7)*sin(Pi/7))^n + (-2*sqrt(7)*sin(2*Pi/7))^n + (-2*sqrt(7)*sin(4*Pi/7))^n. 4
3, -7, 49, -196, 1029, -4802, 24010, -117649, 588245, -2941225, 14823774, -74942413, 380476866, -1936973136, 9886633715, -50563069571, 259029803333, -1328763571296, 6823754590093, -35073821767334, 180407337377834, -928487386730281, 4780794440512601, -24625601552074341, 126883328914736618 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

2*sqrt(7)*sin(Pi/7), -2*sqrt(7)*sin(2*Pi/7) and -2*sqrt(7)*sin(4*Pi/7) are roots of polynomial x^3 + 7*x^2 - 49.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (-7,0,49).

FORMULA

G.f.: (3 + 14*x)/(1 + 7*x - 49*x^3). - Bruno Berselli, Aug 11 2016

a(n) = -7*a(n-1) + 49*a(n-3) with n>2, a(0)=3, a(1)=-7, a(2)=49.

a(2*n-1) = 7^n*A215493(n). - Kai Wang, May 25 2017

MATHEMATICA

RecurrenceTable[{a[0] == 3, a[1] == -7, a[2] == 49, a[n] == -7 a[n - 1] + 49 a[n - 3]}, a, {n, 0, 30}] (* Bruno Berselli, Aug 11 2016 *)

PROG

(PARI) Vec((3 + 14*x)/(1 + 7*x - 49*x^3) + O(x^30)) \\ Colin Barker, Aug 30 2016

CROSSREFS

Cf. A108716, A215794, A275195, A274975, A275831.

Sequence in context: A330020 A327578 A062959 * A190444 A118393 A113775

Adjacent sequences:  A275827 A275828 A275829 * A275831 A275832 A275833

KEYWORD

sign,easy

AUTHOR

Kai Wang, Aug 11 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 03:25 EDT 2021. Contains 348065 sequences. (Running on oeis4.)