login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215494
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(1)=7, a(2)=21, a(3)=70.
16
7, 21, 70, 245, 882, 3234, 12005, 44933, 169099, 638666, 2417807, 9167018, 34790490, 132119827, 501941055, 1907443237, 7249766678, 27557748813, 104759610858, 398257159370, 1514069805269, 5756205681709, 21884262613787, 83201447389466, 316323894905207
OFFSET
1,1
COMMENTS
The Berndt-type sequence number 5 for the argument 2*Pi/7; see also A215007, A215008, A215143, A215493 and A215510.
We note that if we set:
x(n) := s(2)*s(1)^n + s(4)*s(2)^n + s(1)*s(4)^n,
y(n) := s(4)*s(1)^n + s(1)*s(2)^n + s(2)*s(4)^n,
z(n) := s(1)^(n+1) + s(2)^(n+1) + s(4)^(n+1),
for every n=0,1,..., where s(j) := 2*sin(2*Pi*j/7), then the following system of recurrence equations holds true:
x(n+2)=2*x(n)-y(n), y(n+2)=2*y(n)-x(n)+z(n), z(n+2)=y(n)+3*z(n).
Moreover we have a(n)=z(2*n-1), A215493(n)=z(2*n-2), A094429(n)=y(2n-1)-x(2n-1)=-x(2*n+2)/sqrt(7), A094430(n)=-x(2*n+3), y(2*n-2)=sqrt(7)*A215143(n), y(2*n-1)=A215510(n) and x(11)=-(y(10)+z(10))/sqrt(7)=-1078.
We can also deduce the following relations:
x(n-1) = c(1)*s(1)^n + c(2)*s(2)^n + c(4)*s(4)^n,
-y(n-1)-z(n-1) = c(2)*s(1)^n + c(4)*s(2)^n + c(1)*s(4)^n,
y(n-1)-x(n-1) = c(4)*s(1)^n + c(1)*s(2)^n + c(2)*s(4)^n,
for every n=1,2,..., where x(0)=y(0)=z(0)=sqrt(7), and c(j) := 2*cos(2*Pi*j/7).
All these sequences satisfy the following recurrence equation: Z(n+6)-7*Z(n+4)+14*Z(n+2)-7*Z(n)=0. The characteristic polynomial of this equation (after rescaling) has the form (X-s(1)^2)*(X-s(2)^2)*(X-s(3)^2)=X^3-7*X^2+14*X-7 and was recognized by Johannes Kepler (1571-1630); see the Savio-Suryanarayan paper.
We also have the following decomposition: (X-s(1)^(n+1))*(X-s(2)^(n+1))*(X-s(4)^(n+1)) = X^3 - z(n)*X^2 + (1/2)*(z(n)^2-z(2n+1))*X - (-sqrt(7))^(n+1).
Further we have a(n)=A146533(n) for n=1,...,6, and A146533(7)-a(7)=7. We note that all numbers 7^(-1-floor(n/3))*a(n) are integers.
LINKS
B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
L. Bankoff and J. Garfunkel, The Heptagonal Triangle, Math. Magazine, 46 (1973), 7-19.
D. Y. Savio and E. R. Suryanarayan, Chebyshev polynomials and regular polygons, Amer. Math. Monthly, 100 (1993), 657-661.
Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
FORMULA
Equals 7*A122068. - M. F. Hasler, Aug 25 2012
a(n) = s(1)^(2n) + s(2)^(2n) + s(4)^(2n), where s(j) := 2*Sin(2*Pi*j/7) (for the sums of the respective odd powers see A215493, see also A094429, A115146). For the proof of these formula see Witula-Slota's paper.
G.f.: (7 - 28*x + 21*x^2)/(1 - 7*x + 14*x^2 - 7*x^3) = -d(log(1 - 7*x + 14*x^2 - 7*x^3))/dx.
EXAMPLE
We have a(3)=5*7^2 and a(6)=5*7^4, which implies that s(1)^12 + s(2)^12 + s(4)^12 = 49*(s(1)^6 + s(2)^6 + s(4)^6). We also have a(9) = (a(1) + a(3))*7^49.
MATHEMATICA
LinearRecurrence[{7, -14, 7}, {7, 21, 70}, 50]
PROG
(Magma) I:=[7, 21, 70]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 01 2016
(PARI) polsym(x^3 - 7*x^2 + 14*x - 7, 30) \\ (includes a(0)=3) Joerg Arndt, May 31 2017
(PARI) x='x+O('x^30); Vec((7-28*x+21*x^2)/(1-7*x+14*x^2-7*x^3)) \\ G. C. Greubel, Apr 23 2018
CROSSREFS
See A122068.
Sequence in context: A152671 A113859 A245404 * A146533 A208534 A135576
KEYWORD
nonn,easy
AUTHOR
Roman Witula, Aug 13 2012
STATUS
approved