The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122068 Expansion of x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3). 3
 1, 3, 10, 35, 126, 462, 1715, 6419, 24157, 91238, 345401, 1309574, 4970070, 18874261, 71705865, 272491891, 1035680954, 3936821259, 14965658694, 56893879910, 216295686467, 822315097387, 3126323230541, 11885921055638 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. Vol. 70, No. 1, Feb. 1997, 22-31. R. Witula, P. Lorenc, M. Rozanski, and M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, 2014. Index entries for linear recurrences with constant coefficients, signature (7,-14,7). FORMULA From Roman Witula, May 16 2014: (Start) a(n) = (1/2)*Sum_{k=0..2}(1 - 1/sqrt(7)*cot(2^k * alpha))* (2*sin(2^k * alpha))^(2n), where alpha := 2*Pi/7. a(n) = (A215007(n) + A215008(n+1) - 2*A215008(n))/2. (End) a(n) = binomial(2*n-1, n-1) + Sum_{k=1..n} (-1)^k*binomial(2*n, n+7*k). - Greg Dresden, Jan 28 2023 MAPLE seq(coeff(series(x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3), x, n+1), x, n), n =1..30); # G. C. Greubel, Oct 03 2019 MATHEMATICA M = {{2, 1, 0, 0, 0, 0}, {1, 2, 1, 0, 0, 0}, {0, 1, 2, 1, 0, 0}, {0, 0, 1, 2, 1, 0}, {0, 0, 0, 1, 2, 1}, {0, 0, 0, 0, 1, 2}}; v[1] = {1, 1, 1, 1, 1, 1}; v[n_]:= v[n] = M.v[n-1]; Table[v[n][[1]], {n, 30}] Rest@CoefficientList[Series[x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3), {x, 0, 30}], x] (* G. C. Greubel, Oct 03 2019 *) LinearRecurrence[{7, -14, 7}, {1, 3, 10}, 30] (* Harvey P. Dale, Mar 08 2020 *) PROG (PARI) Vec(x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3)+O(x^30)) \\ Charles R Greathouse IV, Sep 27 2012 (Magma) I:=[1, 3, 10]; [n le 3 select I[n] else 7*(Self(n-1) -2*Self(n-2) + Self(n-3)): n in [1..30]]; // G. C. Greubel, Oct 03 2019 (Sage) def A122068_list(prec): P. = PowerSeriesRing(ZZ, prec) return P(x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3)).list() a=A122068_list(30); a[1:] # G. C. Greubel, Oct 03 2019 (GAP) a:=[1, 3, 10];; for n in [4..30] do a[n]:=7*(a[n-1]-2*a[n-2]+a[n-3]); od; a; # G. C. Greubel, Oct 03 2019 CROSSREFS Cf. A087946, A081567. Cf. A215007, A215008. - Roman Witula, May 16 2014 Sequence in context: A216710 A087946 A318114 * A099908 A363781 A318115 Adjacent sequences: A122065 A122066 A122067 * A122069 A122070 A122071 KEYWORD nonn,easy AUTHOR Gary W. Adamson, Oct 15 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 08:19 EDT 2023. Contains 365519 sequences. (Running on oeis4.)