login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318114
Number of compositions of n into exactly n nonnegative parts <= six.
3
1, 1, 3, 10, 35, 126, 462, 1709, 6371, 23905, 90178, 341705, 1299662, 4958968, 18973111, 72763785, 279636451, 1076635399, 4151948115, 16035014604, 62009441410, 240083933750, 930547077155, 3610295962089, 14019766334990, 54487995870126, 211931334450696
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] ((x^7-1)/(x-1))^n.
a(n) <= A088218(n) with equality only for n < 7.
From Peter Bala, Mar 31 2020: (Start)
a(n) = Sum_{i=0..n/7} (-1)^i*C(n,i)*C(2*n-7*i-1,n-7*i).
a(p) == 1 (mod p^2) for any prime p > 7.
More generally, we may have a(p^k) == a(p^(k-1)) (mod p^(2*k)) for k >= 2 and any prime p.
The sequence b(n) := [x^n] ( F(x)/F(-x) )^n, where F(x) = (x^7 - 1)/(x - 1), may satisfy the stronger congruences b(p) == 2 (mod p^3) for prime p > 7 (checked up to p = 499). (End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i=0, 0, add(b(n-j, i-1), j=0..min(n, 6))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30);
CROSSREFS
Column k=6 of A305161.
Cf. A088218.
Sequence in context: A318113 A216710 A087946 * A122068 A099908 A363781
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 17 2018
STATUS
approved