login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318111
Number of maximal 1-intersecting families of 2-sets of [n] = {1,2,...,n}.
2
1, 1, 1, 8, 15, 26, 42, 64, 93, 130, 176, 232, 299, 378, 470, 576, 697, 834, 988, 1160, 1351, 1562, 1794, 2048, 2325, 2626, 2952, 3304, 3683, 4090, 4526, 4992, 5489, 6018, 6580, 7176, 7807, 8474, 9178, 9920, 10701, 11522, 12384, 13288, 14235, 15226
OFFSET
1,4
COMMENTS
a(n) = C(n,3) + n except for n = 2, 3 because all 1-intersecting families of 2-sets of size n > 3 can be interpreted as graphs with no independent edges. On n > 3 nodes, the only possibilities are triangles (C(n,3) possibilities) and stars (n possibilities, except for n=2,3).
FORMULA
From Colin Barker, Aug 31 2018: (Start)
G.f.: x*(1 - 3*x + 3*x^2 + 6*x^3 - 14*x^4 + 11*x^5 - 3*x^6)/(1 - x)^4.
a(n) = n*(8 - 3*n + n^2)/6 for n>3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>7.
(End)
MAPLE
A318111 := n -> `if`(n<=3, 1, n*(8 - 3*n + n^2)/6):
seq(A318111(n), n=1..30); # Peter Luschny, Sep 05 2018
MATHEMATICA
CoefficientList[Series[x*(1 - 3*x + 3*x^2 + 6*x^3 - 14*x^4 + 11*x^5 - 3*x^6) / (1 - x)^4, {x, 0, 50}], x] (* Stefano Spezia, Aug 31 2018 *)
PROG
(PARI) Vec(x*(1 - 3*x + 3*x^2 + 6*x^3 - 14*x^4 + 11*x^5 - 3*x^6)/(1 - x)^4 + O(x^50)) \\ Colin Barker, Aug 31 2018
CROSSREFS
a(n) = A000125(n-1) except for n = 2,3.
Cf. A318112.
Sequence in context: A292949 A072177 A169875 * A240522 A132298 A188558
KEYWORD
nonn,easy
AUTHOR
STATUS
approved