login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318109
a(n) = Sum_{k=0..n} (3*n-2*k)!/((n-k)!^3*k!)*(-2)^k.
5
1, 4, 46, 652, 10186, 168304, 2884456, 50723824, 909192538, 16538659384, 304391739796, 5655971294824, 105929883322576, 1997228410630912, 37871584674309376, 721672204654077952, 13811327854028171098, 265324110145941691912, 5114208160758838538044, 98874597697991698311832, 1916741738060370782929036
OFFSET
0,2
COMMENTS
Diagonal of rational function 1/(1 - (x + y + z - 2*x*y*z)).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..766 (terms 0..100 from Gheorghe Coserea)
FORMULA
G.f. y=A(x) satisfies: 0 = x*(x - 1)*(4*x - 1)*(8*x^2 + 20*x - 1)*y'' + (96*x^4 + 64*x^3 - 120*x^2 + 42*x - 1)*y' + 4*(2*x + 1)*(4*x^2 - 2*x + 1)*y.
From Peter Bala, Mar 16 2023: (Start)
n^2*(3*n - 4)*a(n) = (3*n - 2)*(21*n^2 - 35*n + 10)*a(n-1) - 4*(9*n^3 - 30*n^2 + 29*n - 6)*a(n-2) - 8*(3*n - 1)*(n - 2)^2*a(n-3) with a(0) = 1, a(1) = 4 and a(2) = 46.
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 5. (End)
a(n) ~ (1 + sqrt(3))^(3*n + 1) / (2*Pi*sqrt(3)*n). - Vaclav Kotesovec, Mar 17 2023
G.f.: hypergeom([1/3, 2/3],[1],27*x/(1+2*x)^3)/(1+2*x). - Mark van Hoeij, Nov 28 2024
EXAMPLE
A(x) = 1 + 4*x + 46*x^2 + 652*x^3 + 10186*x^4 + 168304*x^5 + 2884456*x^6 + ...
PROG
(PARI)
a(n) = sum(k=0, n, (3*n-2*k)!/((n-k)!^3*k!)*(-2)^k);
vector(21, n, a(n-1))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gheorghe Coserea, Sep 20 2018
STATUS
approved