login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264717
Central terms of triangle A100326.
2
1, 4, 46, 626, 9094, 136792, 2102728, 32804760, 517325270, 8225083124, 131614959262, 2116988791018, 34196629924584, 554369366584256, 9014333613083632, 146961155561594176, 2401364353568376054, 39316907672544234028, 644861670750937767370
OFFSET
0,2
LINKS
FORMULA
a(n) = A100326(2*n,n).
a(n) = (6*(1797120*n^8 -13703040*n^7 +42834240*n^6 -70197188*n^5 +63370677*n^4 -29185735*n^3 +4100685*n^2 +1396683*n - 409602)*a(n-1) +3*(3*n-5)*(3*n-7)*(2*n-3)*(n-2)*(1248*n^4 -780*n^3 -1441*n^2 +1419*n -326)*a(n-2))/(16*(n-1)*(2*n-1)*(4*n-3)*(4*n-1)*(1248*n^4 -5772*n^3 +8387*n^2 -3031*n -1158)). - G. C. Greubel, Jan 30 2023
a(n) ~ 3^(3*n/2 - 1) * (1 + sqrt(3))^(6*n + 1/2) / (sqrt(Pi*n) * 2^(7*n + 1/2)). - Vaclav Kotesovec, Jan 31 2023
MATHEMATICA
a[n_]:= a[n]= If[n<2, 4^n, (6*(1797120*n^8 -13703040*n^7 +42834240*n^6 -70197188*n^5 +63370677*n^4 -29185735*n^3 +4100685*n^2 +1396683*n - 409602)*a[n-1] +3*(3*n-5)*(3*n-7)*(2*n-3)*(n-2)*(1248*n^4 -780*n^3 -1441*n^2 +1419*n -326)*a[n-2])/(16*(n-1)*(2*n-1)*(4*n-3)*(4*n-1)*(1248*n^4 -5772*n^3 +8387*n^2 -3031*n -1158))];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jan 30 2023 *)
PROG
(Haskell)
a264717 n = a100326 (2 * n) n
(Magma) [n le 2 select 4^(n-1) else ( 6*(1797120*n^8 -28080000*n^7 +189074880*n^6 -715605188*n^5 +1662275017*n^4 -2421570243*n^3 +2154450632*n^2 -1066134220*n +223382400)*Self(n-1) +3*(3*n-8)*(3*n-10)*(2*n-5)*(n-3)*(1248*n^4 -5772*n^3 +8387*n^2 -3031*n -1158)*Self(n-2))/(16*(n-2)*(2*n-3)*(4*n-7)*(4*n-5)*(1248*n^4 -10764*n^3 +33191*n^2 -42113*n +17280)): n in [1..41]]; // G. C. Greubel, Jan 30 2023
(SageMath)
def p(n): return 1797120*n^8 -13703040*n^7 +42834240*n^6 -70197188*n^5 +63370677*n^4 -29185735*n^3 +4100685*n^2 +1396683*n - 409602
def q(n): return (3*n-5)*(3*n-7)*(2*n-3)*(n-2)*(1248*n^4 -780*n^3 -1441*n^2 +1419*n -326)
@CachedFunction
def a(n): # a = A264717
if(n<2): return 4^n
else: return (6*p(n)*a(n-1) +3*q(n)*a(n-2))/(16*(n-1)*(2*n-1)*(4*n-3)*(4*n-1)*(1248*n^4 -5772*n^3 +8387*n^2 -3031*n -1158))
[a(n) for n in range(41)] # G. C. Greubel, Jan 30 2023
CROSSREFS
Cf. A100326.
Sequence in context: A235132 A236956 A113264 * A318109 A234527 A126739
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 21 2015
STATUS
approved