login
A264718
a(1)=2310; for n > 1, a(n) is the least integer not occurring earlier such that a(n) shares exactly five distinct prime divisors with a(n-1).
1
2310, 4620, 6930, 9240, 11550, 13860, 16170, 18480, 20790, 23100, 25410, 27720, 30030, 2730, 5460, 8190, 10920, 13650, 16380, 19110, 21840, 24570, 27300, 32760, 35490, 38220, 40950, 43680, 46410, 3570, 7140, 10710, 14280, 17850, 21420, 24990, 28560, 32130
OFFSET
1,1
COMMENTS
The first term a(1) = 2*3*5*7*11.
LINKS
EXAMPLE
46410 is in the sequence because the distinct prime divisors common to a(29) = 46410 = 2*3*5*7*13*17 and a(28) = 43680 = 2^5*3*5*7*13 are 2, 3, 5, 7 and 13.
MAPLE
with(numtheory):a0:={2, 3, 5, 7, 11}:lst:={}:
for n from 1 to 100 do:
ii:=0:
for k from 2310 to 50000 while(ii=0) do:
y:=factorset(k):n0:=nops(y):lst1:={}:
for j from 1 to n0 do:
lst1:=lst1 union {y[j]}:
od:
a1:=a0 intersect lst1:
if {k} intersect lst ={} and a1 <> {} and nops(a1)=5
then
printf(`%d, `, k):lst:=lst union {k}:a0:=lst1:ii:=1:
else
fi:
od:
od:
MATHEMATICA
a = {2310}; Do[k = 1; While[Nand[! MemberQ[a, k], Length@ Intersection[First /@ FactorInteger@ a[[n - 1]], First /@ FactorInteger@ k] == 5], k++]; AppendTo[a, k], {n, 2, 38}]; a (* Michael De Vlieger, Nov 21 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 21 2015
STATUS
approved