login
A076252
Integers k such that omega(k) = omega(k-1) + omega(k-2) + omega(k-3), where omega(n) is the number of distinct prime factors of n.
3
2310, 3990, 4290, 6090, 6270, 10010, 11550, 12810, 13650, 17094, 17940, 18270, 19380, 21930, 22110, 22770, 23100, 24990, 25410, 27300, 28644, 30090, 32214, 32604, 34034, 34314, 35340, 35880, 37310, 38190, 38570, 38640, 39270, 39780
OFFSET
1,1
LINKS
EXAMPLE
omega(2310) = 5 = 1 + 2 + 2 = omega(2309) + omega(2308) + omega(2307), so 2310 belongs to the sequence.
MATHEMATICA
omega[n_] := Length[FactorInteger[n]]; a = {}; Do[If[omega[n] == omega[n - 1] + omega[n - 2] + omega[n - 3], a = Append[a, n]], {n, 1, 10^5}]; a
Flatten[Position[Partition[PrimeNu[Range[40000]], 4, 1], _?(#[[4]] == Total[ Take[ #, 3]]&), {1}, Heads->False]]+3 (* Harvey P. Dale, Oct 31 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Nov 04 2002
STATUS
approved