Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jan 31 2023 03:33:27
%S 1,4,46,626,9094,136792,2102728,32804760,517325270,8225083124,
%T 131614959262,2116988791018,34196629924584,554369366584256,
%U 9014333613083632,146961155561594176,2401364353568376054,39316907672544234028,644861670750937767370
%N Central terms of triangle A100326.
%H Reinhard Zumkeller, <a href="/A264717/b264717.txt">Table of n, a(n) for n = 0..500</a>
%F a(n) = A100326(2*n,n).
%F a(n) = (6*(1797120*n^8 -13703040*n^7 +42834240*n^6 -70197188*n^5 +63370677*n^4 -29185735*n^3 +4100685*n^2 +1396683*n - 409602)*a(n-1) +3*(3*n-5)*(3*n-7)*(2*n-3)*(n-2)*(1248*n^4 -780*n^3 -1441*n^2 +1419*n -326)*a(n-2))/(16*(n-1)*(2*n-1)*(4*n-3)*(4*n-1)*(1248*n^4 -5772*n^3 +8387*n^2 -3031*n -1158)). - _G. C. Greubel_, Jan 30 2023
%F a(n) ~ 3^(3*n/2 - 1) * (1 + sqrt(3))^(6*n + 1/2) / (sqrt(Pi*n) * 2^(7*n + 1/2)). - _Vaclav Kotesovec_, Jan 31 2023
%t a[n_]:= a[n]= If[n<2, 4^n, (6*(1797120*n^8 -13703040*n^7 +42834240*n^6 -70197188*n^5 +63370677*n^4 -29185735*n^3 +4100685*n^2 +1396683*n - 409602)*a[n-1] +3*(3*n-5)*(3*n-7)*(2*n-3)*(n-2)*(1248*n^4 -780*n^3 -1441*n^2 +1419*n -326)*a[n-2])/(16*(n-1)*(2*n-1)*(4*n-3)*(4*n-1)*(1248*n^4 -5772*n^3 +8387*n^2 -3031*n -1158))];
%t Table[a[n], {n,0,40}] (* _G. C. Greubel_, Jan 30 2023 *)
%o (Haskell)
%o a264717 n = a100326 (2 * n) n
%o (Magma) [n le 2 select 4^(n-1) else ( 6*(1797120*n^8 -28080000*n^7 +189074880*n^6 -715605188*n^5 +1662275017*n^4 -2421570243*n^3 +2154450632*n^2 -1066134220*n +223382400)*Self(n-1) +3*(3*n-8)*(3*n-10)*(2*n-5)*(n-3)*(1248*n^4 -5772*n^3 +8387*n^2 -3031*n -1158)*Self(n-2))/(16*(n-2)*(2*n-3)*(4*n-7)*(4*n-5)*(1248*n^4 -10764*n^3 +33191*n^2 -42113*n +17280)): n in [1..41]]; // _G. C. Greubel_, Jan 30 2023
%o (SageMath)
%o def p(n): return 1797120*n^8 -13703040*n^7 +42834240*n^6 -70197188*n^5 +63370677*n^4 -29185735*n^3 +4100685*n^2 +1396683*n - 409602
%o def q(n): return (3*n-5)*(3*n-7)*(2*n-3)*(n-2)*(1248*n^4 -780*n^3 -1441*n^2 +1419*n -326)
%o @CachedFunction
%o def a(n): # a = A264717
%o if(n<2): return 4^n
%o else: return (6*p(n)*a(n-1) +3*q(n)*a(n-2))/(16*(n-1)*(2*n-1)*(4*n-3)*(4*n-1)*(1248*n^4 -5772*n^3 +8387*n^2 -3031*n -1158))
%o [a(n) for n in range(41)] # _G. C. Greubel_, Jan 30 2023
%Y Cf. A100326.
%K nonn
%O 0,2
%A _Reinhard Zumkeller_, Nov 21 2015