OFFSET
1,1
LINKS
Gheorghe Coserea, Rows n=1..202, flattened
Cyril Banderier, Philippe Flajolet, Gilles Schaeffer, Michele Soria, Random maps, coalescing saddles, singularity analysis, and Airy phenomena, Random Structures and Algorithms 19(3-4), 2001.
EXAMPLE
A(x;t) = 2*t*x + (8*t + t^2)*x^2 + (44*t + 8*t^2 + 2*t^3)*x^3 + ...
Triangle starts:
n\k [1] [2] [3] [4] [5] [6] [7] [8] [9]
[1] 2;
[2] 8, 1;
[3] 44, 8, 2;
[4] 288, 60, 24, 6;
[5] 2106, 464, 228, 96, 22;
[6] 16632, 3742, 2048, 1104, 440, 91;
[7] 138996, 31392, 18246, 11328, 5940, 2184, 408;
[8] 1213056, 272592, 163896, 111048, 68640, 33852, 11424, 1938;
[9] 10955412, 2438208, 1493012, 1070016, 736230, 435344, 199920, 62016, 9614;
[10]...
MATHEMATICA
A000139[x_] = 2/(3x) (HypergeometricPFQ[{-2/3, -1/3}, {1/2}, (27/4) x]-1);
A000168[x_] = HypergeometricPFQ[{1/2, 1}, {3}, 12 x];
h[x_] = x A000168[x]^2;
A[x_, t_] := t h[x] A000139[t h[x]];
Rest[CoefficientList[#, t]]& /@ Rest[CoefficientList[A[x, t] + O[x]^11, x]] // Flatten (* Jean-François Alcover, Aug 29 2019 *)
PROG
(PARI)
seq(N) = {
my(x='x + O('x^(N+3)), m=(-1 + 18*x + (1-12*x)^(3/2))/(54*x^2),
h=x*m^2, c=subst(m, 'x, serreverse(h)));
apply(Vecrev, Vec((subst(c, 'x, 't*h) - 1)/'t));
};
seq(10)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gheorghe Coserea, Sep 22 2018
STATUS
approved