login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318106
Triangle read by rows: T(n,k) is the number of rooted maps with n edges whose core comprises k edges, 1 <= k <= n.
1
2, 8, 1, 44, 8, 2, 288, 60, 24, 6, 2106, 464, 228, 96, 22, 16632, 3742, 2048, 1104, 440, 91, 138996, 31392, 18246, 11328, 5940, 2184, 408, 1213056, 272592, 163896, 111048, 68640, 33852, 11424, 1938, 10955412, 2438208, 1493012, 1070016, 736230, 435344, 199920, 62016, 9614, 101721744, 22369365, 13816224, 10270752, 7602408, 5079438, 2833152, 1209312, 346104, 49335
OFFSET
1,1
LINKS
Gheorghe Coserea, Rows n=1..202, flattened
Cyril Banderier, Philippe Flajolet, Gilles Schaeffer, Michele Soria, Random maps, coalescing saddles, singularity analysis, and Airy phenomena, Random Structures and Algorithms 19(3-4), 2001.
FORMULA
G.f.: A(x;t) = t*h*A000139(t*h), where h=x*A000168(x)^2 (see eqn. (15) in Banderier link).
EXAMPLE
A(x;t) = 2*t*x + (8*t + t^2)*x^2 + (44*t + 8*t^2 + 2*t^3)*x^3 + ...
Triangle starts:
n\k [1] [2] [3] [4] [5] [6] [7] [8] [9]
[1] 2;
[2] 8, 1;
[3] 44, 8, 2;
[4] 288, 60, 24, 6;
[5] 2106, 464, 228, 96, 22;
[6] 16632, 3742, 2048, 1104, 440, 91;
[7] 138996, 31392, 18246, 11328, 5940, 2184, 408;
[8] 1213056, 272592, 163896, 111048, 68640, 33852, 11424, 1938;
[9] 10955412, 2438208, 1493012, 1070016, 736230, 435344, 199920, 62016, 9614;
[10]...
MATHEMATICA
A000139[x_] = 2/(3x) (HypergeometricPFQ[{-2/3, -1/3}, {1/2}, (27/4) x]-1);
A000168[x_] = HypergeometricPFQ[{1/2, 1}, {3}, 12 x];
h[x_] = x A000168[x]^2;
A[x_, t_] := t h[x] A000139[t h[x]];
Rest[CoefficientList[#, t]]& /@ Rest[CoefficientList[A[x, t] + O[x]^11, x]] // Flatten (* Jean-François Alcover, Aug 29 2019 *)
PROG
(PARI)
seq(N) = {
my(x='x + O('x^(N+3)), m=(-1 + 18*x + (1-12*x)^(3/2))/(54*x^2),
h=x*m^2, c=subst(m, 'x, serreverse(h)));
apply(Vecrev, Vec((subst(c, 'x, 't*h) - 1)/'t));
};
seq(10)
CROSSREFS
Row sums give A000168 for n>=1.
Main diagonal give A000139(n-1) for n>=1.
Sequence in context: A221074 A065249 A062038 * A308036 A305677 A296569
KEYWORD
nonn,tabl
AUTHOR
Gheorghe Coserea, Sep 22 2018
STATUS
approved