OFFSET
0,3
COMMENTS
Also coefficient of x^n in the expansion of 2/(1 - x + sqrt(1 - 2*x + 13*x^2)).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (-3)^k * binomial(n,k) * binomial(n-k,k)/(k+1) = Sum_{k=0..floor(n/2)} (-3)^k * binomial(n,2*k) * A000108(k).
(n+2) * a(n) = (2*n+1) * a(n-1) - 13 * (n-1) * a(n-2).
a(n) = Hypergeometric2F1(1/2 - n/2, -n/2, 2, -12). - Vaclav Kotesovec, May 12 2021
MATHEMATICA
a[n_] := Sum[(-3)^k * Binomial[n, 2*k] * CatalanNumber[k], {k, 0, Floor[n/2]}]; Array[a, 28, 0] // Flatten (* Amiram Eldar, May 12 2021 *)
Table[Hypergeometric2F1[1/2 - n/2, -n/2, 2, -12], {n, 0, 30}] (* Vaclav Kotesovec, May 12 2021 *)
PROG
(PARI) {a(n) = polcoef((1+x-3*x^2)^(n+1)/(n+1), n)}
(PARI) {a(n) = sum(k=0, n\2, (-3)^k*binomial(n, k)*binomial(n-k, k)/(k+1))}
(PARI) {a(n) = sum(k=0, n\2, (-3)^k*binomial(n, 2*k)*binomial(2*k, k)/(k+1))}
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 10 2019
STATUS
approved