OFFSET
1,3
COMMENTS
Total area of all trapezoids with height s*t, and bases s+t and t-s for positive integers s and t, n = s + t, and s < t.
Total volume of all rectangular prisms with dimensions s X t X t, for positive integers s and t such that n = s + t and s < t.
Also, total area of all rectangles with dimensions s X t^2, where s and t are positive integers, n = s + t and s < t.
Consider the partitions of n into two distinct parts (s,t) with s < t. Then a(n) is the sum of all the products s*t^2, using the corresponding parts from each (s,t).
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
FORMULA
a(n) = (2*n+1-(-1)^n)*(2*n-3-(-1)^n)*(3*(-1+(-1)^n)*(3+(-1)^n)+4*n*(5+5*(-1)^n+11*n))/3072.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9).
From Colin Barker, Jun 22 2019: (Start)
G.f.: x^3*(4 + 5*x + 9*x^2 + 3*x^3 + x^4) / ((1 - x)^5*(1 + x)^4).
a(n) = (3 - 3*(-1)^n - 2*(17+3*(-1)^n)*n^2 - 12*(1+(-1)^n)*n^3 + 22*n^4) / 384.
(End)
MATHEMATICA
Table[Sum[i*(n - i)^2, {i, Floor[(n - 1)/2]}], {n, 60}]
PROG
(PARI) concat([0, 0], Vec(x^3*(4 + 5*x + 9*x^2 + 3*x^3 + x^4) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Jun 22 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, May 10 2019
STATUS
approved