login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308038
a(n) = Sum_{i=1..floor((n-1)/2)} i * (n-i)^2.
1
0, 0, 4, 9, 34, 57, 134, 196, 370, 500, 830, 1065, 1624, 2009, 2884, 3472, 4764, 5616, 7440, 8625, 11110, 12705, 15994, 18084, 22334, 25012, 30394, 33761, 40460, 44625, 52840, 57920, 67864, 73984, 85884, 93177, 107274, 115881, 132430, 142500, 161770, 173460
OFFSET
1,3
COMMENTS
Total area of all trapezoids with height s*t, and bases s+t and t-s for positive integers s and t, n = s + t, and s < t.
Total volume of all rectangular prisms with dimensions s X t X t, for positive integers s and t such that n = s + t and s < t.
Also, total area of all rectangles with dimensions s X t^2, where s and t are positive integers, n = s + t and s < t.
Consider the partitions of n into two distinct parts (s,t) with s < t. Then a(n) is the sum of all the products s*t^2, using the corresponding parts from each (s,t).
FORMULA
a(n) = (2*n+1-(-1)^n)*(2*n-3-(-1)^n)*(3*(-1+(-1)^n)*(3+(-1)^n)+4*n*(5+5*(-1)^n+11*n))/3072.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9).
From Colin Barker, Jun 22 2019: (Start)
G.f.: x^3*(4 + 5*x + 9*x^2 + 3*x^3 + x^4) / ((1 - x)^5*(1 + x)^4).
a(n) = (3 - 3*(-1)^n - 2*(17+3*(-1)^n)*n^2 - 12*(1+(-1)^n)*n^3 + 22*n^4) / 384.
(End)
MATHEMATICA
Table[Sum[i*(n - i)^2, {i, Floor[(n - 1)/2]}], {n, 60}]
PROG
(PARI) concat([0, 0], Vec(x^3*(4 + 5*x + 9*x^2 + 3*x^3 + x^4) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Jun 22 2019
CROSSREFS
Sequence in context: A173659 A054433 A219769 * A096531 A149121 A149122
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, May 10 2019
STATUS
approved