login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308037
a(n) = Sum_{d|n} Stirling2(n,d).
9
1, 2, 2, 9, 2, 123, 2, 1830, 3027, 43038, 2, 2023728, 2, 49337473, 213142023, 2313595723, 2, 216927216877, 2, 6712023695345, 82312699558575, 366282502967439, 2, 113350450913387211, 2436684974110753, 1850568574287104493, 106563274551407600878, 231678790379913209098, 2
OFFSET
1,2
FORMULA
a(n) = 2 <=> n is prime <=> n in { A000040 }. - Alois P. Heinz, May 10 2019
MAPLE
a:= n-> add(Stirling2(n, d), d=numtheory[divisors](n)):
seq(a(n), n=1..30); # Alois P. Heinz, May 10 2019
MATHEMATICA
a[n_] := a[n] = Sum[StirlingS2[n, d], {d, Divisors[n]}]; Table[a[n], {n, 1, 29}]
PROG
(PARI) a(n) = sumdiv(n, d, stirling(n, d, 2)); \\ Michel Marcus, May 10 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 10 2019
STATUS
approved