login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343824
Sum of the elements in all pairs (d1, d2) of divisors of n such that d1<=d2, d1|n, d2|n, and d1 + d2 <= n.
1
0, 2, 2, 9, 2, 24, 2, 28, 12, 32, 2, 96, 2, 40, 36, 75, 2, 126, 2, 132, 44, 56, 2, 288, 18, 64, 52, 168, 2, 336, 2, 186, 60, 80, 52, 495, 2, 88, 68, 400, 2, 432, 2, 240, 198, 104, 2, 760, 24, 258, 84, 276, 2, 528, 68, 512, 92, 128, 2, 1296, 2, 136, 246, 441, 76, 624, 2, 348
OFFSET
1,2
COMMENTS
If n is prime, then a(n) = 2.
FORMULA
a(n) = Sum_{k=1..floor(n/2)} Sum_{i=1..k} c(n/k) * c(n/i) * (i+k), where c(n) = 1 - ceiling(n) + floor(n).
EXAMPLE
a(7) = 2; There is one divisor pair of 7 whose sum is less than or equal to 7: (1,1). The sum is then 1+1 = 2.
a(9) = 12; The divisor pairs of 9 whose sum is less than or equal to 9 are: (1,1), (1,3) and (3,3). The sum of the coordinates is then (1+1) + (1+3) + (3+3) = 12.
MATHEMATICA
Table[Sum[Sum[(i + k) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, Floor[n/2]}], {n, 80}]
PROG
(PARI) a(n) = sumdiv(n, d1, sumdiv(n, d2, if ((d1 <= d2) && (d1+d2 <= n), d1+d2))); \\ Michel Marcus, May 01 2021
CROSSREFS
Cf. A066446.
Sequence in context: A167594 A108462 A327859 * A182106 A308037 A011403
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Apr 30 2021
STATUS
approved