login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A343824 Sum of the elements in all pairs (d1, d2) of divisors of n such that d1<=d2, d1|n, d2|n, and d1 + d2 <= n. 1
0, 2, 2, 9, 2, 24, 2, 28, 12, 32, 2, 96, 2, 40, 36, 75, 2, 126, 2, 132, 44, 56, 2, 288, 18, 64, 52, 168, 2, 336, 2, 186, 60, 80, 52, 495, 2, 88, 68, 400, 2, 432, 2, 240, 198, 104, 2, 760, 24, 258, 84, 276, 2, 528, 68, 512, 92, 128, 2, 1296, 2, 136, 246, 441, 76, 624, 2, 348 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If n is prime, then a(n) = 2.

LINKS

Table of n, a(n) for n=1..68.

FORMULA

a(n) = Sum_{k=1..floor(n/2)} Sum_{i=1..k} c(n/k) * c(n/i) * (i+k), where c(n) = 1 - ceiling(n) + floor(n).

EXAMPLE

a(7) = 2; There is one divisor pair of 7 whose sum is less than or equal to 7: (1,1). The sum is then 1+1 = 2.

a(9) = 12; The divisor pairs of 9 whose sum is less than or equal to 9 are: (1,1), (1,3) and (3,3). The sum of the coordinates is then (1+1) + (1+3) + (3+3) = 12.

MATHEMATICA

Table[Sum[Sum[(i + k) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, Floor[n/2]}], {n, 80}]

PROG

(PARI) a(n) = sumdiv(n, d1, sumdiv(n, d2, if ((d1 <= d2) && (d1+d2 <= n), d1+d2))); \\ Michel Marcus, May 01 2021

CROSSREFS

Cf. A066446.

Sequence in context: A167594 A108462 A327859 * A182106 A308037 A011403

Adjacent sequences:  A343821 A343822 A343823 * A343825 A343826 A343827

KEYWORD

nonn

AUTHOR

Wesley Ivan Hurt, Apr 30 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 09:18 EST 2021. Contains 349426 sequences. (Running on oeis4.)