login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318105
Triangle read by rows: T(n,k) = (4*n - 3*k)!/((n-k)!^4*k!).
1
1, 24, 1, 2520, 120, 1, 369600, 22680, 360, 1, 63063000, 4804800, 113400, 840, 1, 11732745024, 1072071000, 33633600, 415800, 1680, 1, 2308743493056, 246387645504, 9648639000, 168168000, 1247400, 3024, 1, 472518347558400, 57718587326400, 2710264100544, 61108047000, 672672000, 3243240, 5040, 1
OFFSET
0,2
COMMENTS
Diagonal of rational function R(x,y,z,w,t) = 1/(1 - (x+y+z+w + t*x*y*z*w)) with respect to x,y,z,w, i.e., T(n,k) = [(xyzw)^n*t^k] R(x,y,z,w,t).
Annihilating differential operator: x^2*(3*t*x + 1)^2*((t*x - 1)^4 - 256*x)*Dx^3 + 3*x*(3*t*x + 1)*((t*x - 1)^3*(6*t^2*x^2 + 3*t*x - 1) - 384*x*(t*x + 1))*Dx^2 + (t*x - 1)*((t*x - 1)*(63*t^4*x^4 + 66*t^3*x^3 - 18*t*x + 1) + 48*x*(15*t*x + 17))*Dx + (t*x - 1)*(t*(9*t^4*x^4 + 12*t^3*x^3 + 6*t^2*x^2 - 12*t*x + 1) - 24*(15*t*x - 1)).
LINKS
Gheorghe Coserea, Rows n=0..100, flattened
FORMULA
Let P_n(t) = Sum_{k=0..n} T(n,k)*t^k. Then A125143(n) = P_n(-27), A008977(n) = P_n(0), A082488(n) = P_n(1).
EXAMPLE
A(x;t) = 1 + (24 + t)*x + (2520 + 120*t + t^2)*x^2 + (369600 + 22680*t + 360*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6]
[0] 1;
[1] 24, 1;
[2] 2520, 120, 1;
[3] 369600, 22680, 360, 1;
[4] 63063000, 4804800, 113400, 840, 1;
[5] 11732745024, 1072071000, 33633600, 415800, 1680, 1;
[6] 2308743493056, 246387645504, 9648639000, 168168000, 1247400, 3024, 1;
[7] ...
MATHEMATICA
t[n_, k_] := (4*n - 3*k)!/((n-k)!^4*k!); Table[t[n, k], {n, 0, 10}, {k , 0, n}] // Flatten (* Amiram Eldar, Nov 07 2018 *)
PROG
(PARI) T(n, k) = (4*n-3*k)!/(k!*(n-k)!^4);
concat(vector(8, n, vector(n, k, T(n-1, k-1))))
/*
test:
P(n, v='t) = subst(Polrev(vector(n+1, k, T(n, k-1)), 't), 't, v);
diag(expr, N=22, var=variables(expr)) = {
my(a = vector(N));
for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
for (n = 1, N, a[n] = expr;
for (k = 1, #var, a[n] = polcoef(a[n], n-1)));
return(a);
};
apply_diffop(p, s) = {
s=intformal(s);
sum(n=0, poldegree(p, 'Dx), s=s'; polcoef(p, n, 'Dx) * s);
};
\\ diagonal property:
x='x; y='y; z='z; w='w; t='t;
diag(1/(1 - (x+y+z+w + t*x*y*z*w)), 9, [x, y, z, w]) == vector(9, n, P(n-1))
\\ annihilating diffop:
y = Ser(vector(101, n, P(n-1)), 'x);
p = x^2*(3*t*x + 1)^2*((t*x - 1)^4 - 256*x)*Dx^3 + 3*x*(3*t*x + 1)*((t*x - 1)^3*(6*t^2*x^2 + 3*t*x - 1) - 384*x*(t*x + 1))*Dx^2 + (t*x - 1)*((t*x - 1)*(63*t^4*x^4 + 66*t^3*x^3 - 18*t*x + 1) + 48*x*(15*t*x + 17))*Dx + (t*x - 1)*(t*(9*t^4*x^4 + 12*t^3*x^3 + 6*t^2*x^2 - 12*t*x + 1) - 24*(15*t*x - 1));
0 == apply_diffop(p, y)
*/
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gheorghe Coserea, Oct 15 2018
STATUS
approved