login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318102
Number of rooted 2-connected 4-regular maps on the projective plane, which may have loops, with n inner faces.
3
5, 38, 199, 1466, 12365, 109700, 1003929, 9404402, 89690920, 867506788, 8486154214, 83790178300, 833805753167, 8352569222312, 84150924820499, 852039732062530, 8664839058268872, 88459350543053228, 906208005777385526, 9312350891307447116, 95963703215086597466, 991421114632619679480
OFFSET
1,1
LINKS
Shude Long, Han Ren, Counting 2-Connected 4-Regular Maps on the Projective Plane, Volume 21, Issue 2 (2014), Paper #P2.51.
FORMULA
G.f.: (1 + 2*x)*(Fp2 - 1) + 3*F, where Fp2 and F are given by the system of algebraic equations:
0 = x*(4*x^2 + 1)*z^4 - 4*x*(2*x - 1)*z^3 - 5*x*z^2 + 2*(2*x - 1)*z + 2,
F = (1 - z + 2*z^3*x*(1 - x))/(2*z*(1 - z^2*x)),
f = (z + 2*z*F - 1)/(2*z^2*x),
Fp2 = ((1 - sqrt(1 - 4*z^2*x*f))/(x*z) + z*(z-3)/2 * f^2 + 2*(f - 1))/(2*f - 1).
The initial coefficients of the solutions are:
z = 1 + 2*x + 6*x^2 + 34*x^3 + 254*x^4 + 2052*x^5 + 17332*x^6 + ...,
F = 2*x^2 + 5*x^3 + 20*x^4 + 114*x^5 + 758*x^6 + 5461*x^7 + 41668*x^8 + ...,
f = 1 + x + 6*x^2 + 37*x^3 + 262*x^4 + 2050*x^5 + 17064*x^6 + ...,
Fp2 = 1 + 5*x + 22*x^2 + 140*x^3 + 1126*x^4 + 9771*x^5 + 87884*x^6 + ...
(see Facts 2-5 and Theorem B in the link)
G.f. y=A(x) satisfies:
0 = 4096*x^7*(4*x^2 - 2*x + 1)^2*y^8 + 2048*x^6*(4*x^2 - 2*x + 1)^2*(36*x^2 + 16*x - 7)*y^7 + 128*x^5*(4*x^2 - 2*x + 1)*(8320*x^6 + 19648*x^5 - 1076*x^4 - 1804*x^3 + 1907*x^2 - 580*x + 126)*y^6 + 32*x^4*(4*x^2 - 2*x + 1)*(225280*x^7 + 444240*x^6 + 84688*x^5 - 29552*x^4 + 32044*x^3 - 9577*x^2 + 976*x - 280)*y^5 + x^3*(40239104*x^11 - 79837184*x^10 + 295013376*x^9 - 58917488*x^8 + 30598624*x^7 + 31536856*x^6 - 14288200*x^5 + 7449849*x^4 - 1791392*x^3 + 303304*x^2 - 15680*x + 2800)*y^4 + 2*x^2*(272629760*x^13 - 24282112*x^12 - 175736320*x^11 + 322666592*x^10 - 42540704*x^9 + 44400384*x^8 + 30919616*x^7 - 7960626*x^6 + 8259482*x^5 - 2256409*x^4 + 613344*x^3 - 92803*x^2 + 2512*x - 252)*y^3 + x*(4137222144*x^14 + 1879746560*x^13 - 1113429024*x^12 + 1342878720*x^11 + 65189712*x^10 + 10079664*x^9 + 147999470*x^8 - 45142196*x^7 + 25711384*x^6 - 6520084*x^5 + 2042177*x^4 - 392900*x^3 + 48476*x^2 - 1064*x + 49)*y^2 - 2*(1128267776*x^16 - 4335727616*x^15 - 6678567648*x^14 + 1061181280*x^13 - 2785972352*x^12 + 213096160*x^11 - 166061526*x^10 - 112334126*x^9 + 50212017*x^8 - 27194278*x^7 + 7091863*x^6 - 1701882*x^5 + 350358*x^4 - 36314*x^3 + 2951*x^2 - 44*x + 1)*y + x*(17448304640*x^16 - 38432538624*x^15 + 29298729744*x^14 - 1261398240*x^13 + 9372670936*x^12 + 6841726488*x^11 + 1476038993*x^10 + 1644370884*x^9 + 177903076*x^8 + 98892200*x^7 + 15461596*x^6 - 2656592*x^5 + 901090*x^4 - 145464*x^3 + 25339*x^2 - 364*x + 10).
EXAMPLE
A(x) = 5*x + 38*x^2 + 199*x^3 + 1466*x^4 + 12365*x^5 + 109700*x^6 + ...
PROG
(PARI)
F = (1 - z + 2*z^3*x*(1 - x))/(2*z*(1 - z^2*x));
G = x*(4*x^2 + 1)*z^4 - 4*x*(2*x - 1)*z^3 - 5*x*z^2 + 2*(2*x - 1)*z + 2;
Z(N) = {
my(z0=1+O('x^N), z1=0, n=1);
while (n++,
z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
if (z1 == z0, break()); z0 = z1);
z0;
};
f(N) = subst((z + 2*z*F - 1)/(2*z^2*x), 'z, Z(N));
Fp2(N) = {
my(z=Z(N), f=f(N));
((1 - sqrt(1 - 4*z^2*x*f))/(x*z) + z*(z-3)/2 * f^2 + 2*(f - 1))/(2*f - 1);
};
Fp4(N) = (1 + 2*x)*(Fp2(N) - 1) + 3*subst(F, 'z, Z(N+2));
seq(N) = Vec(Fp4(N+1));
seq(22)
/* test:
system("wget https://oeis.org/A318102/a318102.txt");
apply_diffop(p, s) = { \\ apply diffop p (encoded as Pol in Dx) to Ser s
s=intformal(s);
sum(n=0, poldegree(p, 'Dx), s=s'; polcoeff(p, n, 'Dx) * s);
};
0 == apply_diffop(read("a318102.txt"), Fp4(1001))
*/
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Aug 19 2018
STATUS
approved