login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290326
Triangle read by rows: T(n,k) is the number of c-nets with n+1 faces and k+1 vertices.
19
0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 3, 0, 0, 0, 3, 24, 33, 13, 0, 0, 0, 0, 33, 188, 338, 252, 68, 0, 0, 0, 0, 13, 338, 1705, 3580, 3740, 1938, 399, 0, 0, 0, 0, 0, 252, 3580, 16980, 39525, 51300, 38076, 15180, 2530, 0, 0, 0, 0, 0, 68, 3740, 39525, 180670, 452865, 685419, 646415, 373175, 121095, 16965, 0, 0, 0, 0, 0, 0, 1938, 51300, 452865, 2020120, 5354832, 9095856, 10215450, 7580040, 3585270, 981708, 118668
OFFSET
1,10
COMMENTS
Row n >= 3 contains 2*n-3 terms.
c-nets are 3-connected rooted planar maps. This array also counts simple triangulations.
Table in Mullin & Schellenberg has incorrect values T(14,14) = 43494961412, T(15,13) = 21697730849, T(15,14) = 131631305614, T(15,15) = 556461655783. - Sean A. Irvine, Sep 28 2015
LINKS
Gheorghe Coserea, Rows n = 1..103, flattened
R. C. Mullin, P. J. Schellenberg, The enumeration of c-nets via quadrangulations, J. Combinatorial Theory 4 1968 259--276. MR0218275 (36 #1362).
FORMULA
T(n,k) = Sum_{i=0..k-1} Sum_{j=0..n-1} (-1)^(i+j+1) * ((i+j+2)!/(2!*i!*j!)) * (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) - 4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2)) for all n >= 3, k >= 3.
A106651(n+1) = Sum_{k=1..2*n-3} T(n,k) for n >= 3.
A000287(n) = Sum_{i=1+floor((n+2)/3)..floor(2*n/3)-1} T(i,n-i).
A001506(n) = T(n,n), A001507(n) = T(n+1,n), A001508(n) = T(n+2,n).
A000260(n-2) = T(n, 2*n-3) for n>=3.
G.f. y = A(x;t) satisfies: 0 = (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1). - Gheorghe Coserea, Sep 29 2018
EXAMPLE
A(x;t) = t^3*x^3 + (4*t^4 + 3*t^5)*x^4 + (3*t^4 + 24*t^5 + 33*t^6 + 13*t^7)*x^5 + ...
Triangle starts:
n\k [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
[1] 0;
[2] 0, 0;
[3] 0, 0, 1;
[4] 0, 0, 0, 4, 3;
[5] 0, 0, 0, 3, 24, 33, 13;
[6] 0, 0, 0, 0, 33, 188, 338, 252, 68;
[7] 0, 0, 0, 0, 13, 338, 1705, 3580, 3740, 1938, 399;
[8] 0, 0, 0, 0, 0, 252, 3580, 16980, 39525, 51300, 38076, 15180, 2530;
[9] ...
PROG
(PARI)
T(n, k) = {
if (n < 3 || k < 3, return(0));
sum(i=0, k-1, sum(j=0, n-1,
(-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*
(binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -
4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));
};
N=10; concat(concat([0, 0, 0], apply(n->vector(2*n-3, k, T(n, k)), [3..N])))
\\ test 1: N=100; y=x*Ser(vector(N, n, sum(i=1+(n+2)\3, (2*n)\3-1, T(i, n-i)))); 0 == x*(x+1)^2*(x+2)*(4*x-1)*y' + 2*(x^2-11*x+1)*(x+1)^2*y + 10*x^6
/*
\\ test 2:
x='x; t='t; N=44; y=Ser(apply(n->Polrev(vector(2*n-3, k, T(n, k)), 't), [3..N+2]), 'x) * t*x^3;
0 == (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1)
*/
CROSSREFS
Rows/Columns sum give A106651 (enumeration of c-nets by the number of vertices).
Antidiagonals sum give A000287 (enumeration of c-nets by the number of edges).
Sequence in context: A073275 A309528 A293496 * A284947 A261099 A030120
KEYWORD
nonn,tabf
AUTHOR
Gheorghe Coserea, Jul 27 2017
STATUS
approved