Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 29 2018 10:41:34
%S 0,0,0,0,0,1,0,0,0,4,3,0,0,0,3,24,33,13,0,0,0,0,33,188,338,252,68,0,0,
%T 0,0,13,338,1705,3580,3740,1938,399,0,0,0,0,0,252,3580,16980,39525,
%U 51300,38076,15180,2530,0,0,0,0,0,68,3740,39525,180670,452865,685419,646415,373175,121095,16965,0,0,0,0,0,0,1938,51300,452865,2020120,5354832,9095856,10215450,7580040,3585270,981708,118668
%N Triangle read by rows: T(n,k) is the number of c-nets with n+1 faces and k+1 vertices.
%C Row n >= 3 contains 2*n-3 terms.
%C c-nets are 3-connected rooted planar maps. This array also counts simple triangulations.
%C Table in Mullin & Schellenberg has incorrect values T(14,14) = 43494961412, T(15,13) = 21697730849, T(15,14) = 131631305614, T(15,15) = 556461655783. - _Sean A. Irvine_, Sep 28 2015
%H Gheorghe Coserea, <a href="/A290326/b290326.txt">Rows n = 1..103, flattened</a>
%H R. C. Mullin, P. J. Schellenberg, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80007-9">The enumeration of c-nets via quadrangulations</a>, J. Combinatorial Theory 4 1968 259--276. MR0218275 (36 #1362).
%F T(n,k) = Sum_{i=0..k-1} Sum_{j=0..n-1} (-1)^(i+j+1) * ((i+j+2)!/(2!*i!*j!)) * (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) - 4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2)) for all n >= 3, k >= 3.
%F A106651(n+1) = Sum_{k=1..2*n-3} T(n,k) for n >= 3.
%F A000287(n) = Sum_{i=1+floor((n+2)/3)..floor(2*n/3)-1} T(i,n-i).
%F A001506(n) = T(n,n), A001507(n) = T(n+1,n), A001508(n) = T(n+2,n).
%F A000260(n-2) = T(n, 2*n-3) for n>=3.
%F G.f. y = A(x;t) satisfies: 0 = (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1). - _Gheorghe Coserea_, Sep 29 2018
%e A(x;t) = t^3*x^3 + (4*t^4 + 3*t^5)*x^4 + (3*t^4 + 24*t^5 + 33*t^6 + 13*t^7)*x^5 + ...
%e Triangle starts:
%e n\k [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
%e [1] 0;
%e [2] 0, 0;
%e [3] 0, 0, 1;
%e [4] 0, 0, 0, 4, 3;
%e [5] 0, 0, 0, 3, 24, 33, 13;
%e [6] 0, 0, 0, 0, 33, 188, 338, 252, 68;
%e [7] 0, 0, 0, 0, 13, 338, 1705, 3580, 3740, 1938, 399;
%e [8] 0, 0, 0, 0, 0, 252, 3580, 16980, 39525, 51300, 38076, 15180, 2530;
%e [9] ...
%o (PARI)
%o T(n,k) = {
%o if (n < 3 || k < 3, return(0));
%o sum(i=0, k-1, sum(j=0, n-1,
%o (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*
%o (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -
%o 4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));
%o };
%o N=10; concat(concat([0,0,0], apply(n->vector(2*n-3, k, T(n,k)), [3..N])))
%o \\ test 1: N=100; y=x*Ser(vector(N, n, sum(i=1+(n+2)\3, (2*n)\3-1, T(i,n-i)))); 0 == x*(x+1)^2*(x+2)*(4*x-1)*y' + 2*(x^2-11*x+1)*(x+1)^2*y + 10*x^6
%o /*
%o \\ test 2:
%o x='x; t='t; N=44; y=Ser(apply(n->Polrev(vector(2*n-3, k, T(n, k)), 't), [3..N+2]), 'x) * t*x^3;
%o 0 == (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1)
%o */
%Y Cf. A000260, A001506, A001507, A001508.
%Y Rows/Columns sum give A106651 (enumeration of c-nets by the number of vertices).
%Y Antidiagonals sum give A000287 (enumeration of c-nets by the number of edges).
%K nonn,tabf
%O 1,10
%A _Gheorghe Coserea_, Jul 27 2017