login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001508 a(n) is the number of c-nets with n+1 vertices and 2n+2 edges, n >= 1.
(Formerly M4918 N2111)
3
0, 0, 0, 0, 13, 252, 3740, 51300, 685419, 9095856, 120872850, 1614234960, 21697730835, 293695935764, 4003423965684, 54944523689692, 758990230992175, 10548884795729280, 147458773053913268, 2072369440050644208, 29271357456284966994 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Gheorghe Coserea, Table of n, a(n) for n = 1..204

R. C. Mullin and P. J. Schellenberg, The enumeration of c-nets via triangulations, J. Combin. Theory, 4 (1968), 259-276.

FORMULA

a(n) = A290326(n+2,n). - Gheorghe Coserea, Jul 28 2017

PROG

(PARI)

A290326(n, k) = {

  if (n < 3 || k < 3, return(0));

  sum(i=0, k-1, sum(j=0, n-1,

     (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*

     (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -

      4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));

};

vector(21, n, A290326(n+2, n)) \\ Gheorghe Coserea, Jul 28 2017

CROSSREFS

Cf. A290326.

Sequence in context: A126422 A286878 A106738 * A157946 A321849 A034242

Adjacent sequences:  A001505 A001506 A001507 * A001509 A001510 A001511

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Corrected and extended by Sean A. Irvine, Sep 29 2015

Name changed by Gheorghe Coserea, Jul 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 23:05 EST 2019. Contains 319282 sequences. (Running on oeis4.)