The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286878 One of the two successive approximations up to 17^n for 17-adic integer sqrt(-1). Here the 13 (mod 17) case (except for n=0). 13
 0, 13, 251, 1985, 56028, 390112, 390112, 96940388, 3379649772, 24306922095, 1565949316556, 5597937117454, 553948278039582, 6380170650337192, 154948841143926247, 2848994066094341111, 5711417117604156904, 735629295252607184119, 7353551390343301297535 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS x   = ...04B6ED, x^2 = ...GGGGGG = -1. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..812 Wikipedia, Hensel's Lemma. FORMULA If n > 0, a(n) = 17^n - A286877(n). a(0) = 0 and a(1) = 13, a(n) = a(n-1) + 15 * (a(n-1)^2 + 1) mod 17^n for n > 1. EXAMPLE a(1) = (   D)_17 = 13, a(2) = (  ED)_17 = 251, a(3) = ( 6ED)_17 = 1985, a(4) = (B6ED)_17 = 56028. PROG (Ruby) def A(k, m, n)   ary = [0]   a, mod = k, m   n.times{     b = a % mod     ary << b     a = b ** m     mod *= m   }   ary end def A286878(n)   A(13, 17, n) end p A286878(100) (Python) def A(k, m, n):       ary=[0]       a, mod = k, m for i in range(n):           b=a%mod           ary+=[b, ]           a=b**m           mod*=m       return ary def a286878(n): return A(13, 17, n) print a286878(100) # Indranil Ghosh, Aug 03 2017, after Ruby (PARI) a(n) = if (n, 17^n-truncate(sqrt(-1+O(17^n))), 0); \\ Michel Marcus, Aug 04 2017 CROSSREFS The two successive approximations up to p^n for p-adic integer sqrt(-1): A048898 and A048899 (p=5), A286840 and A286841 (p=13), A286877 and this sequence (p=17). Sequence in context: A218315 A183416 A126422 * A106738 A332849 A001508 Adjacent sequences:  A286875 A286876 A286877 * A286879 A286880 A286881 KEYWORD nonn AUTHOR Seiichi Manyama, Aug 02 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 12:47 EDT 2020. Contains 334840 sequences. (Running on oeis4.)