login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318103
Number of rooted 2-connected loopless 4-regular maps on the projective plane with n inner faces.
3
6, 21, 138, 781, 4836, 30099, 191698, 1236024, 8063492, 53086930, 352249244, 2352800079, 15805224904, 106702428453, 723509453442, 4924851788720, 33638721268140, 230477992427450, 1583550831926508, 10907729315809642, 75307599054762424, 521026923863915206, 3611800088179535100
OFFSET
2,1
LINKS
Shude Long, Han Ren, Counting 2-Connected 4-Regular Maps on the Projective Plane, Volume 21, Issue 2 (2014), Paper #P2.51.
FORMULA
G.f.: ((1 - sqrt(1- 4*x*z^2*f))/(x*z) - z*f - x*(z*f)^3*(2 - f))/(2*f - 1) - 1, where z and f are given by the system of algebraic equations:
0 = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2,
F = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z),
f = (z - 1 + 2*z*x + 2*z*F)/(2*x*z^2).
The initial coefficients of the solutions are:
z = 1 + 2*x^2 + 6*x^3 + 34*x^4 + 176*x^5 + 1004*x^6 + 5858*x^7 + ...
F = x^3 + 2*x^4 + 10*x^5 + 42*x^6 + 209*x^7 + 1066*x^8 + 5726*x^9 + ...
f = 1 + x + 2*x^2 + 9*x^3 + 42*x^4 + 222*x^5 + 1232*x^6 + 7137*x^7 + ...
(see Facts 6-7 and Theorem C in the link)
G.f. y=A(x) satisfies:
0 = 4096*x^7*(2*x + 1)^2*y^8 + 2048*x^6*(2*x + 1)^2*(16*x - 7)*y^7 + 128*x^5*(2*x + 1)*(1792*x^3 - 285*x^2 - 76*x + 126)*y^6 + 32*x^4*(2*x + 1)*(14336*x^4 - 2360*x^3 - 57*x^2 - 144*x - 280)*y^5 + x^3*(1146880*x^6 + 625920*x^5 + 282633*x^4 + 174368*x^3 + 44232*x^2 + 6720*x + 2800)*y^4 + 2*x^2*(2*x + 1)*(229376*x^6 + 108288*x^5 + 419113*x^4 + 53390*x^3 - 39619*x^2 + 1000*x - 252)*y^3 + x*(458752*x^8 + 740608*x^7 + 3399862*x^6 + 1371564*x^5 - 317093*x^4 - 58308*x^3 + 25400*x^2 - 672*x + 49)*y^2 + 2*(65536*x^9 + 162048*x^8 + 1258098*x^7 + 287981*x^6 - 86682*x^5 + 22504*x^4 + 5250*x^3 - 2026*x^2 + 36*x - 1)*y + x^2*(16384*x^7 + 58112*x^6 + 674825*x^5 + 33912*x^4 + 11954*x^3 + 23076*x^2 - 390*x + 12).
From Vaclav Kotesovec, Aug 25 2018: (Start)
a(n) ~ c1 * (196/27)^n / n^(5/4) * (1 + c2/n^(1/4) + c3/n^(1/2)), where
c1 = 7^(5/4) * Gamma(1/4) / (5^(5/4) * 3^(3/4) * Pi),
c2 = -17 * 7^(1/4) * sqrt(Pi) / (3^(7/4) * 5^(1/4) * Gamma(1/4)),
c3 = 71 * sqrt(7) * Pi / (2^(3/2) * sqrt(3) * 5^(3/2) * Gamma(1/4)^2). (End)
EXAMPLE
A(x) = 6*x^2 + 21*x^3 + 138*x^4 + 781*x^5 + 4836*x^6 + 30099*x^7 + ...
PROG
(PARI)
F = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z);
G = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2;
Z(N) = {
my(z0=1+O('x^N), z1=0, n=1);
while (n++,
z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
if (z1 == z0, break()); z0 = z1);
z0;
};
f(N) = subst((z - 1 + 2*z*x + 2*z*F)/(2*x*z^2), 'z, Z(N));
Fp4(N) = {
my(z=Z(N), f=f(N));
((1 - sqrt(1- 4*x*z^2*f))/(x*z) - z*f - x*(z*f)^3*(2 - f))/(2*f - 1) - 1;
};
seq(N) = Vec(Fp4(N+2));
seq(23)
/* test:
system("wget https://oeis.org/A318103/a318103.txt");
apply_diffop(p, s) = {
s=intformal(s);
sum(n=0, poldegree(p, 'Dx), s=s'; polcoeff(p, n, 'Dx) * s);
};
0 == apply_diffop(read("a318103.txt"), Fp4(1001))
*/
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Aug 20 2018
STATUS
approved