login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081077 a(n) = Lucas(4*n+2) + 3, or Lucas(2*n)*Lucas(2*n+2). 0
6, 21, 126, 846, 5781, 39606, 271446, 1860501, 12752046, 87403806, 599074581, 4106118246, 28143753126, 192900153621, 1322157322206, 9062201101806, 62113250390421, 425730551631126, 2918000611027446, 20000273725560981 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

LINKS

Table of n, a(n) for n=0..19.

Index entries for linear recurrences with constant coefficients, signature (8,-8,1).

FORMULA

a(n) = 8a(n-1) - 8a(n-2) + a(n-3).

a(n) = A081067(n)+1. - R. J. Mathar, May 18 2007

G.f.: -3*(2-9*x+2*x^2)/(x-1)/(x^2-7*x+1) = -3/(x-1)+(-3*x+3)/(x^2-7*x+1). - R. J. Mathar, Nov 18 2007

a(n) = 3+(3/2)*{[(7/2)-(3/2)*sqrt(5)]^n+[(7/2)+(3/2)*sqrt(5)]^n}+(1/2)*sqrt(5)*{[(7/2)+(3/2) *sqrt(5)]^n-[(7/2)-(3/2)*sqrt(5)]^n}, with n>=0. - Paolo P. Lava, Dec 01 2008

Sum_{n>=0} 1/a(n) = sqrt(5)/10. - Amiram Eldar, Oct 05 2020

MAPLE

luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d, `, luc(4*n+2)+3) od: # James A. Sellers, Mar 05 2003

MATHEMATICA

Table[LucasL[4*n + 2] + 3, {n, 0, 30}] (* Amiram Eldar, Oct 05 2020 *)

PROG

(PARI) Vec(-3*(2-9*x+2*x^2)/(x-1)/(x^2-7*x+1) + O(x^30)) \\ Michel Marcus, Dec 23 2014

CROSSREFS

Cf. A000032 (Lucas numbers), A081067.

Sequence in context: A012840 A013320 A056308 * A093775 A318103 A058821

Adjacent sequences:  A081074 A081075 A081076 * A081078 A081079 A081080

KEYWORD

nonn,easy

AUTHOR

R. K. Guy, Mar 04 2003

EXTENSIONS

More terms from James A. Sellers, Mar 05 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 03:36 EDT 2022. Contains 354047 sequences. (Running on oeis4.)