login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056308
Number of reversible strings with n beads using a maximum of six different colors.
7
1, 6, 21, 126, 666, 3996, 23436, 140616, 840456, 5042736, 30236976, 181421856, 1088414496, 6530486976, 39182222016, 235093332096, 1410555793536, 8463334761216, 50779983373056, 304679900238336, 1828079250264576, 10968475501587456, 65810852102532096
OFFSET
0,2
COMMENTS
A string and its reverse are considered to be equivalent. Thus aabc and cbaa are considered to be identical, but abca is a different string.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
FORMULA
a(n) = (6^n + 6^floor((n+1)/2))/2.
G.f.: (1-21*x^2) / ((1-6*x)*(1-6*x^2)). - R. J. Mathar, Jul 06 2011 [Adapted to offset 0 by Robert A. Russell, Nov 10 2018]
a(n) = 6*a(n-1) + 6*a(n-2) - 36*a(n-3) for n > 3. - Colin Barker, Mar 20 2017
a(n) = (A000400(n) + A056452(n)) / 2. - Robert A. Russell, Jun 19 2018
a(n) = 6^(n + floor((n-1)/2)) * a(1-n) for all n in Z. - Michael Somos, Jul 10 2018
EXAMPLE
For a(2)=21, the six achiral strings are AA, BB, CC, DD, EE, and FF; the 15 (equivalent) chiral pairs are AB-BA, AC-CA, AD-DA, AE-EA, AF-FA, BC-CB, BD-DB, BE-EB, BF-FB, CD-DC, CE-EC, CF-FC, DE-ED, DF-FD, and EF-FE.
MATHEMATICA
k=6; Table[(k^n+k^Ceiling[n/2])/2, {n, 0, 30}] (* Robert A. Russell, Nov 25 2017 *)
a[ n_] := (6^n + 6^Quotient[n + 1, 2]) / 2; (* Michael Somos, Jul 10 2018 *)
LinearRecurrence[{6, 6, -36}, {1, 6, 21}, 31] (* Robert A. Russell, Nov 10 2018 *)
PROG
(PARI) Vec((1-21*x^2) / ((1 - 6*x)*(1 - 6*x^2)) + O(x^30)) \\ Colin Barker, Mar 20 2017 [Adapted to offset 0 by Robert A. Russell, Nov 10 2018]
(PARI) {a(n) = (6^n + 6^((n+1)\2)) / 2}; \\ Michael Somos, Jul 10 2018
(Magma) I:=[1, 6, 21]; [n le 3 select I[n] else 6*Self(n-1) +6*Self(n-2) - 36*Self(n-3): n in [1..30]]; // G. C. Greubel, Nov 10 2018
CROSSREFS
Column 6 of A277504.
Cf. A000400 (oriented), A320524 (chiral), A056452 (achiral).
Sequence in context: A251593 A012840 A013320 * A081077 A093775 A318103
KEYWORD
nonn,easy
EXTENSIONS
a(0)=1 prepended by Robert A. Russell, Nov 10 2018
STATUS
approved