login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318104
Number of genus 4 rooted hypermaps with n darts.
3
8064, 579744, 23235300, 684173164, 16497874380, 344901105444, 6471056247920, 111480953909328, 1792031518697232, 27197316623478960, 393207192141924744, 5453210050430783640, 72949244341257096792, 945523594111460363208, 11918067649004916470640, 146538779626167833263888, 1762112462707129510538640
OFFSET
9,1
COMMENTS
Column k = 4 of A321710.
a(n) = 0 for n < 9. - N. J. A. Sloane, Dec 24 2018
LINKS
Mednykh, A.; Nedela, R. Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 6
T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
Peter Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, arXiv:1312.2538 [math.CO], 2014.
FORMULA
G.f.: -y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13), where y = C(2*x), C being the g.f. for A000108.
EXAMPLE
A(x) = 8064*x^9 + 579744*x^10 + 23235300*x^11 + 684173164*x^12 + ...
MATHEMATICA
y = (1 - Sqrt[1 - 8 x])/(4 x);
gf = -y (y-1)^9 (262 y^14 - 4716 y^13 + 78327 y^12 - 569134 y^11 + 3266910 y^10 - 12675726 y^9 + 37548087 y^8 - 82680972 y^7 + 137674842 y^6 - 170295272 y^5 + 152918277 y^4 - 94811622 y^3 + 37127810 y^2 - 7566846 y + 505869)/(4 (y-2)^17 (y+1)^13);
Drop[CoefficientList[gf + O[x]^26, x], 9] (* Jean-François Alcover, Feb 07 2019, from PARI *)
PROG
(PARI)
seq(N) = {
my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
Vec(-y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13));
};
seq(17)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Nov 12 2018
STATUS
approved